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Let Y be a 3-manifold with one torus boundary component and Ỹ → Y a finite
regular covering of Y induced by a map π1(Y ) → G. Let K(Ỹ ) denote the kernel
of the map i∗ : H1(∂Ỹ ; Q) → H1(Ỹ ; Q). For a slope α on ∂Y , denote by V (α, Ỹ )
the subspace of H1(∂Ỹ ; Q) spanned by pre-images of α. We say that a slope α on
∂Y is a virtual homology slope (for Ỹ of rank n) if dim(K(Ỹ )∩ V (α, Ỹ )) = n > 0.
Note that if α is a virtual homology slope, then there is a non-separating surface
in Ỹ whose boundary components map down to curves that have slope (a multiple
of) α in ∂Y .

We relate the group determinant of G, as studied by Frobenius and Dedekind,
to a matrix that encodes K(Ỹ ). This enables us to prove the following theorems:

Theorem 0.1. Let Y be a hyperbolic 3-manifold with one torus boundary compo-
nent. Then either:

i) for all n ∈ N, there is a regular cover Ỹ → Y and a slope α on ∂Y so that α

is a virtual homology slope for Ỹ of rank at least n, or
ii) every slope on ∂Y is a virtual homology slope.

Theorem 0.2. Let Y be a hyperbolic 3-manifold with one torus boundary compo-
nent. Then infinitely many fillings of Y are virtually Haken.

Theorem 0.2 is implied for the case that Y is not fibered by [2].
Let G be a finite group, and R : G → Aut(C|G|) the representation induced by

the right regular action of G on itself, g : h 7→ hg−1. Let {Xg} be a collection
of commuting variables, one for each element of G. For any representation ρ
of G, the representation matrix M(ρ) is the matrix

∑
g∈G ρ(g)Xg. Then the

group matrix of G, M(G), is the representation matrix for R. Thus M(G) has
Xg−1

i gj
as the ij-th entry. The group determinant of G is det(M(G)). Important

to our computations is the fact that if a representation is reducible, i.e., ρ =
ρ1 ⊕ ρ2, then the representation determinant det(ρ) = det(M(ρ)) is a product
det(ρ1)det(ρ2). Since we will ultimately be interested in linear factors of the group
determinant, we will look for irreducible representations that have linear factors
in their determinants.

In our applications we will have a matrix that is a specialization of the group
matrix that is symmetric. Thus to simplify matters we work with the symmetrized
group matrix, Msym(G) which is obtained from M(G) by setting Xg = Xg−1 .
Similarly detsym(G) = det(Msym(G)). For example, the group determinant of Z3

is (a + b + c)(a2 − ab + b2 − ac− bc + b2), while detsym(Z3) = (a + 2b)(a− b)2.
Given a regular cover Ỹ → Y induced by a map π1(Y ) → G, we define a matrix

B(Ỹ ) that encodes the vector space K(Ỹ ). Rational eigenvalues of B(Ỹ ) are
virtual homology slopes, and the dimension of the associated eigenspace equals the
rank of the slope. When π1(∂Y ) → 1 ∈ G, the boundary matrix is a specialization
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of Msym(G). When det(Msym(G)) has a rational linear factor of rank n, any
regular covering Ỹ → Y with covering group G where the boundary torus lifts will
have a virtual homology slope of rank at least n.

In general however, the boundary torus will not lift, and in this case we identify
the variables Xg1 and Xg2 whenever g1 and g2 are in the same element of {HgH ∪
Hg−1H}g∈G. This yields the group matrix of G with respect to H, M(G, H), and
we can determine the rational eigenvalues of B(Ỹ ) from this matrix.

The covers we use are induced by the surjections to PSL(2, Fp) given in [5]. This
implies that π1(Y ) surjects PSL(2, Fp) for infinitely many p where π1(∂M) maps
onto the cyclic subgroup of order p. By analyzing the permutation representation
induced by the action of PSL(2, Fp) on P1(Fp), we show that there is an invariant
slope of rank at least p for any such cover. This is the idea of the proof of Theorem
0.1. An application of [4] shows that if p ≥ 2, there is a non-separating surface S

in Ỹ that is not the fiber of a fibration and whose boundary curves all map down
to curves of the same slope in ∂Y . By results in [6], [2] and [1], a large enough
cyclic cover of Ỹ dual to S will contain a closed incompressible surface, a lift of
Freedman-Freedman tubing of two copies of S, and this will survive fillings that
are distance greater than 1 from this slope. Since infinitely many fillings of Y lift
to this cover, this implies Theorem 0.2.
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