Erratum to Groups with S^2 Bowditch boundary

Bena Tshishiku and Genevieve Walsh

March 24, 2021

Abstract

The purpose of this erratum is to correct the proof of Lemma 3.1 in [TW20].

1 The result

The following statement appears in [TW20, Lemma 3.1].

Theorem 1. Let X be a compact metric space. Assume that there exists a surjection $\pi: X \to S^2$ such that (i) there exists a countable dense subset $Z \subset S^2$ so that the restriction of π to $\pi^{-1}(S^2 \setminus Z)$ is injective, and (ii) for each $w \in Z$, the space X_w obtained from X by collapsing each $\pi^{-1}(z)$ to a point for $z \neq w$ is homeomorphic to a closed disk \mathbb{D}^2 . Then X is homeomorphic to the Sierpinski curve.

The proof in [TW20] is not complete, as pointed out to us by Lucas H. R. Souza, whom we kindly thank.

About the error. The proof in [TW20] attempts to show that any two spaces X, X' as in the statement are homeomorphic by expressing $X = \lim X(k)$ as an inverse limit, and similarly for X', and constructing a homeomorphism $X \to X'$ by showing that the associated inverse systems $\{X(k)\}$ and $\{X'(k)\}$ are isomorphic. This is done inductively. The base case is a theorem of Bennett [Ben72], which says that any two countable dense subsets of S^2 differ by a homeomorphism $\phi: S^2 \to S^2$. Given this, we want to obtain $\phi_k: X(k) \to X'(k)$ by a "blowup" of ϕ . However, given the non-explicit nature of Bennett's result, it is not clear that one can construct ϕ_k in this manner. In our argument, we attempt to obtain ϕ_k as an extension of a map ϕ_{k-1} that is claimed to be uniformly continuous, but this assertion is not justified.

The fix. We provide a different approach that is closer to Whyburn's classical result [Why58, Thm. 3] that characterizes the Sierpinski curve as the unique locally-connected, 1-dimensional continuum in S^2 whose complement is a union of open disks whose boundaries are disjoint.

2 Setup for the proof

Let (X, π, Z) be as in the Theorem 1. We call X (or more precisely the tuple (X, π, Z)) an S-space. We will show that any S-space is homeomorphic to a Sierpinski carpet in Section 3. In this section we collect some basic facts about S-spaces that we use to prove the Theorem 1 in Section 3.

Given (X, π, Z) , we denote $\mathcal{C} = \{\pi^{-1}(z) : z \in Z\}$. By condition (ii) of the Theorem 1, each $C \in \mathcal{C}$ is an embedded circle in X. We call these circles *peripheral*.

Lemma 2 (Diameter of peripheral circles). Let X be a S-space. For any d > 0, there are only finitely many peripheral circles with diameter > d.

Proof. Suppose for a contradiction that there are infinitely many C_1, C_2, \ldots of diameter > d. Choose $x_i, y_i \in C_i$ of distance > d. After passing to a subsequences, we may assume that $x_i \to x$ and $y_i \to y$ with $x \neq y$.

If x, y belong to the same peripheral circle $C = \pi^{-1}(w)$, we consider the quotient X_w (collapsing each $\pi^{-1}(z)$ to a point for $z \neq w$) and observe that x, y cannot be separated by open sets in X_w , which contradicts the assumption that $X_w \cong \mathbb{D}^2$. Similarly, if x, y do not belong to the same peripheral circle, we consider the quotient of X by collapsing each $C \in \mathcal{C}$ to a point, and observe that this space is not Hausdorff; on the other hand this quotient is S^2 by assumption, a contradiction. \square

Lemma 3 (Quotients of S-spaces). Let X be an S-space, and let $C_0 \subset C$ be a finite collection of k peripheral circles. The space $X(C_0)$ obtained by collapsing each $C \in C \setminus C_0$ to a point is homeomorphic to the compact surface of genus 0 with k boundary components.

Proof. This is explained in [TW20] in the proof of Lemma 3.1 (this argument is independent of the aforementioned error). \Box

Lemma 4 (Subdividing an S-space). Let X be an S-space.

- (i) If $S \subset X$ is an embedded circle disjoint from the peripheral circles, then the closure of each component of $X \setminus S \subset X$ is an S-space.
- (ii) More generally, if G is a finite, connected graph embedded in X so that each peripheral circle is either contained in or disjoint from G, then G decomposes X into a union of S-spaces, one for each component of $X \setminus G$.

Proof. (i) By assumption, $\pi(S) \subset S^2$ is an embedded circle. By the Jordan curve theorem, this circle separates S^2 into two closed disks D_1, D_2 with common boundary $\pi(S)$. Then $X \setminus S$ has two components with respective closures $X_1 = \pi^{-1}(D_1)$

and $X_2 = \pi^{-1}(D_2)$. Observe that the quotient map $X_i \to D_i/\partial D_i = S^2$ induces an S-space structure on X_i .

(ii) Let $C_0 \subset C$ be the collection of peripheral circles contained in G, and consider the quotient $X(C_0)$. By Lemma 3, $X(C_0)$ is a genus 0 surface. The graph G embeds in $X(C_0)$, is connected, and contains $\partial X(C_0)$, so it subdivides $X(C_0)$ into a collection of closed disks. The pre-image of each disk in X has a natural S-space structure, similar to (i).

Given a graph $G \subset X$ as in Lemma 4, we say that G subdivides X into the S-spaces provided by Lemma 4, which we call the *components* of the subdivision. We define the *mesh* of G as the maximum diameter of the components of its subdivision.

The following lemma is analogous to [Why58, Lem. 1]. This lemma may be viewed as the main tool used in the proof Theorem 1.

Lemma 5. Let X, X' be S-spaces with peripheral circles C, C', respectively. Given $C_0 \in C$ and $C'_0 \in C'$, a homeomorphism $h_0 : C_0 \to C'_0$, and $\epsilon > 0$, there exist graphs G and G' with $C_0 \subset G \subset X$ and $C'_0 \subset G' \subset X'$, each with mesh $< \epsilon$ and a homeomorphism $h : G \to G'$ extending h_0 .

Proof. The proof is nearly identical to the proof of [Why58, Lem. 1], even though our setup is slightly different. Take $C_0 \subset C$ and $C'_0 \subset C'$ equal-sized collections of peripheral circles containing all the peripheral circles with diameter $\geq \epsilon$. We can choose C_0, C'_0 finite by Lemma 2. By Lemma 3, there is a homeomorphism $f: X(C_0) \to X'(C'_0)$ that extends the given homeomorphism $h_0: C_0 \to C'_0$ (here we are abusing notation slightly by identifying the $C_0 \subset X$ with its homeomorphic copy in $X(C_0)$).

Let $Z_0 \subset X(\mathcal{C}_0)$ be the image of the collapsed peripheral circles under the quotient $X \to X(\mathcal{C}_0)$, and define $Z_0' \subset X'(\mathcal{C}_0')$ similarly. Then $f(Z_0) \cup Z_0' \subset X'(\mathcal{C}_0')$ is a countable collection of points, and for any $\delta > 0$, we can find a graph $\bar{G}' \subset X'(\mathcal{C}_0')$ containing $\partial X'(\mathcal{C}_0')$ of mesh $< \delta$ that is disjoint from $f(Z_0) \cup Z_0'$. The graphs $\bar{G} = f^{-1}(G')$ and \bar{G}' lift homeomorphically to $G \subset X$ and $G' \subset X'$. By construction, point-preimages of $X \to X(\mathcal{C}_0)$ have diameter $< \epsilon$. Therefore, since X and $X(\mathcal{C}_0)$ are compact, if δ is sufficiently small, then $G \subset X$ will have mesh $< \epsilon$. See [Why58, Lem. 2] for a proof of this fact. The same goes for $G' \subset X'$.

Finally, observe that $f \mid : \bar{G} \to \bar{G}'$ lifts to the desired homeomorphism $h : G \to G'$.

3 The corrected proof

The Sierpinski curve is an S-space, as explained in [TW20, Proof of Lemma 3.1]. Thus to prove the theorem, it suffices to show that any two S-spaces are homeomorphic. This argument is almost identical to the proof of [Why58, Thm. 3]. We sketch the argument and refer to [Why58] for additional details.

Let (X, π, Z) and (X', π', Z') be two S-spaces with peripheral circles \mathcal{C} and \mathcal{C}' , respectively. For each $n \geq 1$, we construct graphs $G_n \subset X$ and $G'_n \subset X'$ satisfying (1) G_n and G'_n have mesh $< \frac{1}{n}$ and (2) $G_n \subset G_{n+1}$ and $G'_n \subset G'_{n+1}$. In addition, we construct homeomorphisms $h_n : G_n \to G'_n$ with h_{n+1} extending h_n .

First we explain how to construct a homeomorphism $X \to X'$ given the existence of the maps $h_n: G_n \to G'_n$. First, these homeomorphisms induce a homeomorphism h between $G:=\bigcup G_n$ and $G':=\bigcup G'_n$. Since G_n, G'_n have mesh $\to 0, G\subset X$ and $G'\subset X'$ are dense. Since adjacent components of the subdivision of G_n go to adjacent components of the subdivision of G'_n , the map $h:G\to G'$ is uniformly continuous. See [Why58, last two paragraphs of the proof of Theorem 3] for a detailed proof. Therefore h extends to a homeomorphism $X\to X'$.

It remains to construct G_n , G'_n , and h_n . We proceed inductively. First choose arbitrarily $C_0 \in \mathcal{C}$, $C'_0 \in \mathcal{C}'$ and a homeomorphism $h_0 : C_0 \to C'_0$, and apply Lemma 5 with $\epsilon = 1$ to obtain $h_1 : G_1 \to G'_1$. Now G_1 subdivides X, and observe that each component is an \mathcal{S} -space with a "preferred" peripheral circle, namely the unique one intersecting G_1 nontrivially. Note also that there is a natural correspondence between the components of the subdivisions of $G_1 \subset X$ and $G'_1 \subset X'$. For the induction step, given G_n, G'_n, h_n , we apply Lemma 5 to each pair of corresponding components of the subdivisions $G_n \subset X$ and $G'_n \subset X'$, taking $\epsilon = \frac{1}{n}$ and using the preferred peripheral circles and h_n as input.

References

- [Ben72] R. Bennett. Countable dense homogeneous spaces. Fund. Math., 74(3):189-194, 1972.
- [TW20] B. Tshishiku and G. Walsh. On groups with S^2 Bowditch boundary. Groups Geom. Dyn., 14(3):791–811, 2020.
- [Why58] G. T. Whyburn. Topological characterization of the Sierpiński curve. Fund. Math., 45:320–324, 1958.

Bena Tshishiku, Brown University, Providence, RI

Email address: bena_tshishiku@brown.edu

Genevieve Walsh, Tufts University, Medford, MA Email address: genevieve.walsh@tufts.edu