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Abstract

The purpose of this erratum is to correct the proof of Lemma 3.1 in [TW20].

1 The result

The following statement appears in [TW20, Lemma 3.1].

Theorem 1. Let X be a compact metric space. Assume that there exists a surjection
π : X → S2 such that (i) there exists a countable dense subset Z ⊂ S2 so that the
restriction of π to π−1(S2 \ Z) is injective, and (ii) for each w ∈ Z, the space Xw

obtained from X by collapsing each π−1(z) to a point for z 6= w is homeomorphic to
a closed disk D2. Then X is homeomorphic to the Sierpinski curve.

The proof in [TW20] is not complete, as pointed out to us by Lucas H. R. Souza,
whom we kindly thank.

About the error. The proof in [TW20] attempts to show that any two spaces X,X ′ as
in the statement are homeomorphic by expressing X = limX(k) as an inverse limit,
and similarly for X ′, and constructing a homeomorphism X → X ′ by showing that
the associated inverse systems {X(k)} and {X ′(k)} are isomorphic. This is done
inductively. The base case is a theorem of Bennett [Ben72], which says that any
two countable dense subsets of S2 differ by a homeomorphism φ : S2 → S2. Given
this, we want to obtain φk : X(k)→ X ′(k) by a “blowup” of φ. However, given the
non-explicit nature of Bennett’s result, it is not clear that one can construct φk in
this manner. In our argument, we attempt to obtain φk as an extension of a map
φk−1

∣∣ that is claimed to be uniformly continuous, but this assertion is not justified.

The fix. We provide a different approach that is closer to Whyburn’s classical
result [Why58, Thm. 3] that characterizes the Sierpinski curve as the unique locally-
connected, 1-dimensional continuum in S2 whose complement is a union of open
disks whose boundaries are disjoint.
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2 Setup for the proof

Let (X,π, Z) be as in the Theorem 1. We call X (or more precisely the tuple
(X,π, Z)) an S-space. We will show that any S-space is homeomorphic to a Sier-
pinski carpet in Section 3. In this section we collect some basic facts about S-spaces
that we use to prove the Theorem 1 in Section 3.

Given (X,π, Z), we denote C = {π−1(z) : z ∈ Z}. By condition (ii) of the Theorem
1, each C ∈ C is an embedded circle in X. We call these circles peripheral.

Lemma 2 (Diameter of peripheral circles). Let X be a S-space. For any d > 0,
there are only finitely many peripheral circles with diameter > d.

Proof. Suppose for a contradiction that there are infinitely many C1, C2, . . . of di-
ameter > d. Choose xi, yi ∈ Ci of distance > d. After passing to a subsequences,
we may assume that xi → x and yi → y with x 6= y.

If x, y belong to the same peripheral circle C = π−1(w), we consider the quotient
Xw (collapsing each π−1(z) to a point for z 6= w) and observe that x, y cannot
be separated by open sets in Xw, which contradicts the assumption that Xw

∼= D2.
Similarly, if x, y do not belong to the same peripheral circle, we consider the quotient
of X by collapsing each C ∈ C to a point, and observe that this space is not
Hausdorff; on the other hand this quotient is S2 by assumption, a contradiction.

Lemma 3 (Quotients of S-spaces). Let X be an S-space, and let C0 ⊂ C be a
finite collection of k peripheral circles. The space X(C0) obtained by collapsing each
C ∈ C \ C0 to a point is homeomorphic to the compact surface of genus 0 with k
boundary components.

Proof. This is explained in [TW20] in the proof of Lemma 3.1 (this argument is
independent of the aforementioned error).

Lemma 4 (Subdividing an S-space). Let X be an S-space.

(i) If S ⊂ X is an embedded circle disjoint from the peripheral circles, then the
closure of each component of X \ S ⊂ X is an S-space.

(ii) More generally, if G is a finite, connected graph embedded in X so that each
peripheral circle is either contained in or disjoint from G, then G decomposes
X into a union of S-spaces, one for each component of X \G.

Proof. (i) By assumption, π(S) ⊂ S2 is an embedded circle. By the Jordan curve
theorem, this circle separates S2 into two closed disks D1, D2 with common bound-
ary π(S). Then X \ S has two components with respective closures X1 = π−1(D1)
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and X2 = π−1(D2). Observe that the quotient map Xi → Di/∂Di = S2 induces an
S-space structure on Xi.

(ii) Let C0 ⊂ C be the collection of peripheral circles contained in G, and consider
the quotient X(C0). By Lemma 3, X(C0) is a genus 0 surface. The graph G embeds
in X(C0), is connected, and contains ∂X(C0), so it subdivides X(C0) into a collection
of closed disks. The pre-image of each disk in X has a natural S-space structure,
similar to (i).

Given a graph G ⊂ X as in Lemma 4, we say that G subdivides X into the S-spaces
provided by Lemma 4, which we call the components of the subdivision. We define
the mesh of G as the maximum diameter of the components of its subdivision.

The following lemma is analogous to [Why58, Lem. 1]. This lemma may be viewed
as the main tool used in the proof Theorem 1.

Lemma 5. Let X,X ′ be S-spaces with peripheral circles C, C′, respectively. Given
C0 ∈ C and C ′0 ∈ C′, a homeomorphism h0 : C0 → C ′0, and ε > 0, there exist
graphs G and G′ with C0 ⊂ G ⊂ X and C ′0 ⊂ G′ ⊂ X ′, each with mesh < ε and a
homeomorphism h : G→ G′ extending h0.

Proof. The proof is nearly identical to the proof of [Why58, Lem. 1], even though
our setup is slightly different. Take C0 ⊂ C and C′0 ⊂ C′ equal-sized collections
of peripheral circles containing all the peripheral circles with diameter ≥ ε. We
can choose C0, C′0 finite by Lemma 2. By Lemma 3, there is a homeomorphism
f : X(C0) → X ′(C′0) that extends the given homeomorphism h0 : C0 → C ′0 (here
we are abusing notation slightly by identifying the C0 ⊂ X with its homeomorphic
copy in X(C0)).

Let Z0 ⊂ X(C0) be the image of the collapsed peripheral circles under the quotient
X → X(C0), and define Z ′0 ⊂ X ′(C′0) similarly. Then f(Z0) ∪ Z ′0 ⊂ X ′(C′0) is a
countable collection of points, and for any δ > 0, we can find a graph Ḡ′ ⊂ X ′(C′0)
containing ∂X ′(C′0) of mesh < δ that is disjoint from f(Z0) ∪ Z ′0. The graphs
Ḡ = f−1(G′) and Ḡ′ lift homeomorphically to G ⊂ X and G′ ⊂ X ′. By construction,
point-preimages of X → X(C0) have diameter < ε. Therefore, since X and X(C0)
are compact, if δ is sufficiently small, then G ⊂ X will have mesh < ε. See [Why58,
Lem. 2] for a proof of this fact. The same goes for G′ ⊂ X ′.

Finally, observe that f
∣∣ : Ḡ → Ḡ′ lifts to the desired homeomorphism h : G →

G′.
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3 The corrected proof

The Sierpinski curve is an S-space, as explained in [TW20, Proof of Lemma 3.1].
Thus to prove the theorem, it suffices to show that any two S-spaces are homeo-
morphic. This argument is almost identical to the proof of [Why58, Thm. 3]. We
sketch the argument and refer to [Why58] for additional details.

Let (X,π, Z) and (X ′, π′, Z ′) be two S-spaces with peripheral circles C and C′,
respectively. For each n ≥ 1, we construct graphs Gn ⊂ X and G′n ⊂ X ′ satisfying
(1) Gn and G′n have mesh < 1

n and (2) Gn ⊂ Gn+1 and G′n ⊂ G′n+1. In addition,
we construct homeomorphisms hn : Gn → G′n with hn+1 extending hn.

First we explain how to construct a homeomorphism X → X ′ given the existence of
the maps hn : Gn → G′n. First, these homeomorphisms induce a homeomorphism
h between G :=

⋃
Gn and G′ :=

⋃
G′n. Since Gn, G

′
n have mesh → 0, G ⊂ X

and G′ ⊂ X ′ are dense. Since adjacent components of the subdivision of Gn go to
adjacent components of the subdivision of G′n, the map h : G → G′ is uniformly
continuous. See [Why58, last two paragraphs of the proof of Theorem 3] for a
detailed proof. Therefore h extends to a homeomorphism X → X ′.

It remains to construct Gn, G′n, and hn. We proceed inductively. First choose
arbitrarily C0 ∈ C, C ′0 ∈ C′ and a homeomorphism h0 : C0 → C ′0, and apply Lemma
5 with ε = 1 to obtain h1 : G1 → G′1. Now G1 subdivides X, and observe that each
component is an S-space with a “preferred” peripheral circle, namely the unique
one intersecting G1 nontrivially. Note also that there is a natural correspondence
between the components of the subdivisions of G1 ⊂ X and G′1 ⊂ X ′. For the
induction step, given Gn, G

′
n, hn, we apply Lemma 5 to each pair of corresponding

components of the subdivisions Gn ⊂ X and G′n ⊂ X ′, taking ε = 1
n and using the

preferred peripheral circles and hn as input.
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