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Abstract

Suppose that M is a fibered three-manifold whose fiber is a surface of positive genus
with one boundary component. Assume that M is not a semi-bundle. We show that
infinitely many fillings of M along OM are virtually Haken. It follows that infinitely
many Dehn-surgeries of any non-trivial knot in the three-sphere are virtually Haken.

1 Introduction

In this paper manifold will always mean a compact, connected, orientable, possibly
bounded, three-manifold. A bundle means a manifold which fibers over the circle.
A semi-bundle is a manifold which is the union of two twisted I-bundles (over con-
nected surfaces) whose intersection is the corresponding dI-bundle. An irreducible,
O-irreducible manifold that contains a properly embedded incompressible surface is
called Haken. A manifold is virtually Haken if has a finite cover that is Haken.

Waldhausen’s virtually Haken conjecture is that every irreducible closed manifold
with infinite fundamental group is virtually Haken. It was shown in [?] that most
Dehn-fillings of an atoroidal Haken manifold with torus boundary are virtually Haken
provided the manifold is not a bundle.

Theorem 1. Suppose that M is a bundle with fiber a compact surface F and that F
has exactly one boundary component. Also suppose that M is not a semi-bundle and
not S' x D2. Then infinitely many Dehn-fillings of M along OM are virtually Haken.

Corollary 2. Let k be a knot in a homology three-sphere N. Suppose that N — k is
irreducible and that k does not bound a disk in N. Then infinitely many Dehn-surgeries
along k are virtually Haken.

The main idea is to construct a surface of invariant slope (see section 3) in a particu-
lar finite cover of M. Such surfaces are studied in arbitrary covers using representation
theory in a sequel [?]. While writing this paper we noticed that Thurston’s theory
of bundles extends to semi-bundles, and in particular there are manifolds which are
semi-bundles in infinitely many ways. We discuss this in the next section.
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2 Bundles and Semi-Bundles

Various authors have studied semi-bundles, in particular [?], [?],[?]. Suppose a manifold
has a regular cover which is a surface bundle. We wish to know when a particular
fibration in the cover corresponds to a bundle or semi-bundle structure on the quotient.
The following has the same flavor as some results of Hass in [?].

Theorem 3. Let M be a compact, connected, orientable, irreducible three-manifold,
p: M — M a finite reqular cover, and G the group of covering automorphisms. Suppose
that ¢ : M — S is a fibration of M over the circle. Suppose that the cyclic subgroup
V of HY(M;Z) generated by [¢] is invariant under the action of G. Then one of the
following occurs:

1. The action of G on V is trivial. Then M also fibers over the circle. Moreover
there is a fibering of M which is covered by a fibering of M that is isotopic to the
original fibering.

2. The action of G on V is non-trivial. Then M is a semi-bundle. Moreover there
is a semi-fibering of M which is covered by a fibering of M that is isotopic to the
original fibering.

Proof. Define N = ker[¢. : mM — mS']. Since ¢ is a fibration N is finitely
generated. If IV is cyclic then the fiber is a disc or annulus. In these cases the result is
easy. Thus we may assume N is not cyclic. Because V is G-invariant, it follows that
N is a normal subgroup of mM and @ = mM/N is infinite. Using [?, Theorem 3|
it follows that M is a bundle or semi-bundle (depending on case 1 or 2) with fiber a
compact surface F' and N has finite index in 71 F. The pull-back of this (semi)fibration
of M gives a fibration of M in the cohomology class of ¢ and is therefore isotopic to
the given fibration. O

Suppose that G = (Zy)™ acts on a real vector space V and let X = Hom(G,C)
denote the set of characters on G. Then X = Hom(G,Zsy). For each € € X there is a
G-invariant generalized e-eigenspace

Ve={veV : VgeG g-v=c¢(g)v }.

Then V is the direct sum of these subspaces V.

Suppose that M is an atoroidal irreducible manifold with boundary consisting of
incompressible tori. According to Thurston there is a finite collection (possibly empty),
C={Ci,--,Cy}, called fibered faces. Each fibered face is the interior of a certain top-
dimensional face of the unit ball of the Thurston norm on Ha(M,9M;R). It is an open
convex set with the property that fibrations of M correspond to rational points in the
projectivized space P(U;C;) C P (Ha(M,0M;R)).

Let G = H,(M;Z/2). The regular cover M, of M with covering group G is called
the Zo-universal cover. Let D = {Dy,---,D;} be the fibered faces for this cover. For
each e € H'(M;Zs) there is an e-eigenspace Hj . of HQ(MS, OM,: R). For each 1 < i <1
and € € HY(M;Zs) we call Sie = D; N Hy o a semi-fibered face if it is not empty. It is
the interior of a compact convex polyhedron whose interior is in the interior of some
fibered face for M;. Let S; be the union of the Si.c where € is non-trivial.



Theorem 4. With the above notation there is a bijection between isotopy classes of
semi-fiberings of M and rational points in P(U;S;).

Proof. A semi-fibration of M gives such a rational point by considering the induced
fibration on M. The converse follows from Theorem 3. We leave it as an exercise to
check uniqueness up to isotopy. ]

We believe that all points in P(U;.S;) correspond to isotopy classes of non-transversally-
orientable, transversally-measured, product-covered 2-dimensional foliations of M. This
is true for rational points and therefore holds on a dense open set (using the fact that
the set of non-degenerate twisted 1-forms is open). However, since we have no use for
this fact, we have not tried very hard to prove it.

Definition. A manifold is a sesqui-bundle if it is both a bundle and a semi-bundle.

An example is the torus bundle M with monodromy -Id. This is the quotient of
Euclidean three-space by the group G, in [?, Theorem 3.5.5]. M has infinitely many
semi-fibrations with generic fiber a torus and two Klein-bottle fibers. In addition, M
is a bundle thus a sesqui-bundle.

A hyperbolic example may be obtained from M as follows. Let C be a 1-submanifold
in M which is a small C'—perturbation of a finite set of disjoint, immersed, closed
geodesics in M chosen so that:

(1) no two components of C' cobound an annulus and no component bounds a Mobius
strip

(2) C intersects every flat torus and flat Klein bottle.

(3) Each component of C' is transverse to both a chosen fibration and semi-fibration.

Let N be M with a regular neighborhood of C removed. Then the interior of N admits
a complete hyperbolic metric. By (3) it is a sesqui-bundle. This answers a question of
Zulli who asked in [?] if there are non-Seifert 3-manifolds which are sesqui-bundles.

3 Virtually Haken Fillings

The following is well-known, but we include it here for ease of reference.

Lemma 5. Suppose M is Seifert fibered and has one boundary component . Then one
of the following holds:
(1) M is D? x S* or a twisted I-bundle over the Klein bottle.

(2) Infinitely many Dehn-fillings are virtually Haken.

Proof. The base orbifold ) has one boundary component and no corners. If
@ > 0 then @ is a disc with at most one cone point thus M = D? x S. If
X°@Q = 0 then Q is a Mobius band or a disc with two cone points labeled 2 and in
either case () has a 2-fold orbifold-cover that is an annulus A. But then M is 2-fold
covered by a circle bundle over A. Since M is orientable it follows that this bundle is
S1 x A and hence M is a twisted I-bundle over the Klein bottle.



Finally, if x"*(Q) < 0 then all but one filling of M is Seifert fibered. There are
infinitely many fillings of M which give a Seifert fibered space, P, with base orbifold
Q' and x°*(Q’) < 0. There is an orbifold-covering of @’ which is a closed surface of
negative Euler characteristic. The induced covering of P contains an essential vertical
torus and is therefore virtually Haken. O

Definitions. A slope on a torus T is the isotopy class of an essential simple closed
curve on 1. We say that a slope lifts to a covering of T if it is represented by a loop
which lifts. The following is immediate:

Lemma 6. Suppose T — T is a finite covering. Then the following are equivalent:
(1) Some slope on T lifts to T.

(2) The covering is finite cyclic.

(3) Infinitely many slopes on T lift to T.

The distance, A(a, 3), between slopes «, 3 on T is the minimum number of intersec-
tion points between representative loops. If « is a slope on a torus boundary component
of M then M(«) denotes the manifold obtained by Dehn-filling M using a. A surface
S in a manifold M is essential if it is compact, connected, orientable, incompressible,
properly-embedded, and not boundary-parallel. Let M be a manifold with boundary a
torus and o C M a slope. Suppose that IV is a finite cover of M. An essential surface
S C N has invariant slope a if 0S # ¢ and every component of 0.5 projects to a loop
homotopic to a non-zero multiple of oe. We call a finite cover p : N — M a 0-cover if
there is an integer d > 0 and a homomorphism 6 : m1(0M) — Zg4 such that for every
boundary component 7" of N we have p,(m1T) = ker . The existence of 6 ensures each
component of ON is the same cyclic cover of OM.

The following lemma reduces the proof of the main theorem to constructing an
essential non-fiber surface of invariant slope in a 0-cover of M.

Lemma 7. Suppose that M is a compact, connected, orientable irreducible 3-manifold
with one torus boundary component. Suppose that there is a 0-cover N of M and an
essential non-separating surface S C N of invariant slope. Assume that S is not a fiber
of a fibration of N. Then M has infinitely many virtually-Haken Dehn-fillings.

Proof. We first remark that the particular case that concerns us in this paper is
that M is a bundle with boundary and thus M is irreducible. Since M is irreducible
at most 3 fillings give reducible manifolds, [?]. A cover of an irreducible manifold is
irreducible [?]. Therefore it suffices to show there are infinitely many fillings of M
which have a finite cover containing an essential surface.

If M contains an essential torus then this torus remains incompressible for infinitely
many Dehn-fillings by [?, Theorem 2.4.2]. If M is Seifert fibered then by Lemma 5 either
the result holds or M = S' x D? or is a twisted I-bundle over the Klein bottle. The
latter two possibilities do not contain a surface S as in the hypotheses. By Thurston’s
hyperbolization theorem we are reduced to case that M is hyperbolic.

Since p : N — M is a 0-cover there is d > 0 such that every component of ON is a
d-fold cover of OM. Let k be a positive integer coprime to d. Let py : Ni, — N be the



k-fold cyclic cover dual to .S. We claim that there is a homomorphism 0y, : MM — Zgq
such that every slope in ker 0, lifts to every component of ONj,.

Assuming this, the filling M (y) of M is covered by a filling, Nj(7), of Ny, if and
only if the slope v C M lifts to each component of dNj. Since S is non-separating,
by [?, Theorem 5.7] , there is K > 0 such that if & > K then there is an essential
closed surface Fj, C Ny, obtained by Freedman tubing two lifts of S. We choose such
k coprime to d. By [?, Theorem 5.3], there is a finite set of slopes (1, -, 3, on OM
and L > 0 so that if v C M is a slope and A(~, 3;) > L for all ¢ then the projection
of Fy into M (7) is mi-injective. Assuming the claim, there are infinitely many slopes
~ € ker 6}, satisfying these inequalities. For such ~ the cover Nj(y) — M(~) contains
the essential surface Fj,.

It only remains to prove the claim. Let T be a component of ON and 8 C T be
the slope given by S NT. Let T be a component of N, which covers T. The cover
pi| : T — T is cyclic of degree k' some divisor of k (depending only on [SNT]). Also 8
lifts to this cover. Suppose that a slope v C OM lifts to a slope ¥ C T. It follows that
7 lifts to T if k' divides A(%, 3). If this condition is satisfied by some lift, 7, of ~ then,
since S has invariant slope and N — M is a 0-cover, it is satisfied by every such lift.

Let T — T be the k/-fold cyclic cover dual to 3. Since k' and d are coprime the
composite of this cover and the cyclic d-fold cover T'— 9M is a cyclic cover of degree
dk'. By Lemma 6 there are infinitely many slopes on M which lift to T. Every slope
on OM which lifts to T also lifts to every component of dNj. This proves the claim. [

Proof of Theorem 1. We attempt to construct S and IV as in Lemma 7. The
action of the monodromy on H;(F';Z2) has some finite order m. Therefore there is a
finite cyclic m-fold cover W — M such that W is a bundle with fiber F' and the action
of the monodromy for W on H;(F';Zs) is trivial. We then have

HY(W;Zy) = H (F; Zs) ® H'(S'; Zy).

Since F has boundary and F # D? we may choose a non-zero element ¢ = (b,0) €
HY(F;Zy) ® H'(S';Zy). This determines a two-fold cover W of W. Since F has one
boundary component, ¢ vanishes on H1(OW';Zs), and since W has one boundary com-
ponent, W has exactly two boundary components T} and T». The action of the covering
involution, 7, swaps these tori. In particular W — M is a -cover.

We claim that there is an essential surface S in W such that

7.[S] = —[S] # 0 € Ho(W,0W; 7).

Using real coefficients, all cohomology groups have direct-sum decomposition into +1
eigenspaces for 7*; thus H(OW;R) = V, @ V_. Since 7 swaps 1] and T, then, with
obvious notation, it swaps pu; with po and A; with Xo. If € = 41 then V. has basis
{1 + €p2, A\1 + €X2} and thus has dimension 2. Let

K = Im |inel* : H'(W;R) — H1(8W;R)] .

= 1. Since dim(K) = 2

Decompose K = K ®K_. We claim that dim(K ;) = dim(K_)
_. The intersection pairing

the only other possibilities are that K, = V or K_ =



on OW is dual to the pairing on H'(OW,R) given by < ¢,9 > = (¢ U ) N [OW].
This pairing vanishes on K. Since < pq + €ug, A1 + €dg > = 2 < i, A\ > = £2, the
restriction of <, > to each of V4 is non-degenerate. This contradicts K = V..

Choose a primitive class ¢ € H'(W;Z) with incl*¢ € K_. Let S be an essential
oriented surface in TV representing the class Poincaré dual to ¢. Then 7,[S] = —[S] as
required.

The 1-manifold «; = T; NAS with the induced orientation is a 1-cycle in OW. Then
[0S] = [a1] + [as] € H1(OW). Since T} is a torus all the components of «; are parallel.
Since 7(T1) = T» all components of dS project to isotopic loops in W thus S has
invariant slope for the cover W — M. This gives:

Case (i) If S is not the fiber of a fibration of W then the result follows from Lemma
7.

Thus we are left with the case that S is the fiber of a fibration of W. Let N be the
Zo-universal covering of W. This is a regular covering and each component of N is
a two-fold cover of OW. We claim that the composition of coverings N — W — M is
regular.

Recall that a subgroup H < G is characteristic if it is preserved by Aut(G). The
Zo-universal covering N — W corresponds to the characteristic subgroup m N < mW.
The cover W — M is cyclic and so m;W is normal in w1 M. A characteristic subgroup
of a normal subgroup is normal. Hence 7N is also normal in 71 M. This proves the
claim. It follows that N — M is a d-cover. A pre-image, S, of S in N is a fiber of a
fibration.

Case (ii) Suppose the one-dimensional vector space of Ha(N,ON;R) spanned by [5]
is invariant under the group of covering transformations of N — M.

Then, by Theorem 3, M is semi-fibered which contradicts our hypothesis. This
completes case (ii). Therefore there is some covering transformation, o, such that
ol8]# %8,

Because S and ¢S are fibers, they both meet every boundary component of N.
Since S has invariant slope for the cover N — M it follows that S and oS have the
same invariant slope for this cover.

Case (iii) Suppose S is a fiber and [05] # +0.[0S] € Hi(ON).

Given a boundary component of N, there are integers a and b such that the class
al[S]+b-0.[S] € Hy(N,ON) is non-zero and represented by an essential surface G that
misses this boundary component. Thus G is not a fiber of a fibration. Clearly G has
invariant slope. The result now follows from Lemma 7 applied to the surface G in the

O-cover N. This completes case (iii). The remaining case is:
Case (iv) S is a fiber and there is € € {£1} with 0,[0S] = €-[05] € H;(ON).

Consideration of the homology exact sequence for the pair (N,0ON) shows =z =
0«[S] — € [S] € Hy(N,ON) is the image of some y € Ho(N). Using exactness of the
sequence again it follows that y + i, Ho(ON) is not zero in Ha(N)/ivH2(ON). Hence

every filling of N produces a closed manifold with o > 0. Infinitely many slopes on



OM lift to slopes on ON. The result follows. This completes the proof of case (iv) and
thus of Theorem 1. O

Proof of corollary 2. Let n(K) be an open tubular neighborhood of k. By hy-
pothesis the knot exterior M = N\ n(K) is irreducible. Every semibundle contains two
disjoint compact surfaces whose union is non-separating, thus the first Betti number
with mod-2 coefficients of a semi-bundle is at least 2. Because N is a homology sphere
Hy(M;Zs) = 7Zs, therefore M is not a semi-bundle. Since N is a homology sphere it,
and therefore M, are orientable.

If M is a bundle with fiber F' then, since N is a homology sphere, F' has exactly one
boundary component. Since k does not bound a disk in N it follows that M # D? x S1.
The result now follows from Theorem 1. If M contains a closed essential surface then
infinitely many fillings are Haken, [?, Theorem 2.4.2]. The remaining possibilities are
that M is hyperbolic and not a bundle, or else Seifert fibered. The hyperbolic non-
bundle case follows from [?].

This leaves the case that M is Seifert fibered. The manifold M is not a twisted
I-bundle over the Klein bottle because the latter has mod-2 Betti number 2. The result
now follows from Lemma 5. 0
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