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Abstract

We investigate commensurability classes of hyperbolic knot complements in the generic case of knots

without hidden symmetries. We show that such knot complements which are commensurable are cyclically

commensurable, and that there are at most 3 hyperbolic knot complements in a cyclic commensurability

class. Moreover if two hyperbolic knots have cyclically commensurable complements, then they are fibered

with the same genus and are chiral. A characterisation of cyclic commensurability classes of complements

of periodic knots is also given. In the non-periodic case, we reduce the characterisation of cyclic commen-

surability classes to a generalization of the Berge conjecture.

1 Introduction

We work in the oriented category throughout this paper. In particular we endow the

complement of any knot K ⊂ S3 with the orientation inherited from the standard orien-

tation on S3. We consider two knots to be equivalent if there is an orientation-preserving

homeomorphism of S3 taking one to the other. Covering maps will be assumed to preserve

orientation unless stated otherwise.

Two oriented orbifolds are commensurable if they have homeomorphic finite sheeted

covers. We are interested in studying commensurability classes of knot complements in S3.

By abuse of language we will say that two knots in the 3-sphere are commensurable if their

complements are commensurable. Set

C(K) = {knots K ′ ⊂ S3 : K ′ is commensurable with K}.

A difficult and widely open problem is to describe commensurability classes of knots.

One of our main concerns is to provide a priori bounds on the number of hyperbolic

knots in a given commensurability class. Unless otherwise stated, knots are considered

to be in S3. Hence in this paper K ⊂ S3 will be a hyperbolic knot. Its complement

S3 \ K = H3/ΓK is a complete, oriented, hyperbolic 3-manifold of finite volume, where

π1(S
3 \K) ∼= ΓK ⊂ PSL(2,C) = Isom+(H3) is a lattice. Any knot K ′ commensurable with
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K is also hyperbolic and the commensurability condition is equivalent to the fact that ΓK

and some conjugate of ΓK′ in Isom+(H3) have a common finite index subgroup.

Recall that the commensurator of a group Γ in PSL(2,C) is

C+(Γ) = {g ∈ PSL(2,C) : [Γ : Γ ∩ g−1Γg] <∞ and [g−1Γg : Γ ∩ g−1Γg] <∞}.

Then K and K ′ are commensurable if and only if C+(ΓK) and C+(ΓK′) are conjugate in

PSL(2,C). An element g ∈ C+(ΓK) induces an orientation-preserving isometry between

two finite sheeted coverings of S3 \K. It is called a hidden symmetry of K if it is not the

lift of an isometry of S3 \K.

The group of isotopy classes of orientation-preserving symmetries of (S3,K) is isomor-

phic, in the obvious way, to Isom+(S3 \K), the group of orientation-preserving isometries

of S3 \ K. It is also isomorphic to the quotient group N+(K)/ΓK where N+(K) is the

normalizer of ΓK in PSL(2,C). We will use either description as convenient. Then K has

hidden symmetries if and only if N+(K) is strictly smaller than C+(ΓK). Hyperbolic knots

with hidden symmetries appear to be rare, as Neumann and Reid [27] showed that if K has

hidden symmetries then the cusp shape of H3/ΓK is contained in Q[i] or Q[
√
−3].

Currently, the only knots known to admit hidden symmetries are the figure-8 and the

two dodecahedral knots of Aitchison and Rubinstein described in [1] (c.f. Conjecture 1.3

below). These three knots have cusp field Q[
√
−3]. There is one known example of a knot

with cusp field Q[i], and it does not admit hidden symmetries. See Boyd’s notes [7, page

17] and Goodman, Heard and Hodgson [17].

It is a fundamental result of Margulis that a finite co-volume, discrete subgroup Γ of

PSL(2,C) is non-arithmetic if and only if there is a unique minimal orbifold in the commen-

surability class of H3/Γ, namely H3/C+(Γ). Reid [37] has shown that the figure-8 is the

only arithmetic knot (i.e. knot with arithmetic complement) in S3, hence it is the unique

knot in its commensurability class. So in what follows we only consider non-arithmetic

knots. In particular, C+(ΓK) is a lattice in PSL(2,C) and the unique minimal element in

the commensurability class of S3 \K = H3/ΓK is the oriented orbifold H3/C+(ΓK), which

we denote by Omin(K).

When K has no hidden symmetries,

Omin(K) = H3/N+(K) = (S3 \K)/Isom+(S3 \K).

The positive solution of the Smith conjecture implies that Isom+(S3\K) is cyclic or dihedral

and the subgroup of Isom+(S3 \K) which acts freely on K is cyclic of index at most 2. We

denote this subgroup by Z(K). Clearly the oriented orbifold

ZK = (S3 \K)/Z(K)

has a torus cusp and either coincides with the minimal element in the commensurability

class of S3\K or is a 2-fold cover of it. Hence in this case the cusp of Omin(K) is flexible: its

horospherical cross-section is either T 2 or S2(2, 2, 2, 2). Neumann and Reid [27] proved that

a non-arithmetic knot K has no hidden symmetries if and only if Omin(K) has a flexible

cusp and further, that this condition is equivalent to the fact that S3 \K normally covers

Omin(K). If a commensurability class has a unique minimal element with a single cusp and

the cusp is flexible, we call the commensurability class itself flexible. When K does admit

hidden symmetries, the horospherical cross-section of Omin(K) is a Euclidean turnover,
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which is rigid. If a commensurability class has a unique minimal element with a single cusp

which is rigid, we say that the commensurability class itself is rigid.

Reid and Walsh [38] proved that a hyperbolic 2-bridge knot is unique in its commensu-

rability class and raised the following conjecture:

Conjecture 1.1. (Reid-Walsh [38]) For a hyperbolic knot K ⊂ S3, |C(K)| ≤ 3.

See also [26, Theorem 2].

The commensurability class of the (−2, 3, 7) pretzel knot is flexible [24] and contains

exactly three knots. Neil Hoffman [20] has constructed an infinite family of hyperbolic

knots with this property.

Our first result proves the conjecture in the generic case:

Theorem 1.2. A flexible commensurability class contains at most three hyperbolic knot

complements.

A precise formulation of the expected genericity of the flexible case is contained in the

following conjecture of Neumann and Reid:

Conjecture 1.3. (Neumann-Reid) The only rigid commensurability class containing hyper-

bolic knot complements is the commensurability class of the dodecahedral knots, and there

are only two knot complements in this class.

We say that two hyperbolic orbifolds are cyclically commensurable if they have a common

finite cyclic cover. We denote by CC(K) the set of hyperbolic knots cyclically commensurable

with K. A priori cyclic commensurability is much more restrictive than commensurabil-

ity. However for hyperbolic knots without hidden symmetries, the commensurability class

and the cyclic commensurability class coincide. Theorem 1.2 follows immediately from the

following results:

Theorem 1.4. (1) Knots without hidden symmetries which are commensurable are cycli-

cally commensurable.

(2) A cyclic commensurability class contains at most three hyperbolic knot complements.

In this article we analyze the case of hyperbolic knots which are commensurable to other

hyperbolic knots and which do not admit hidden symmetries. However, many of our results

hold for any hyperbolic knots with hidden symmetries which are cyclically commensurable

to other knots. This conjecturally does not happen (see Conjecture 4.14).

Geometrisation combines with the work of González-Acuña and Whitten [16] to deter-

mine close connections between the family of knots which are cyclically commensurable to

other knots and the family of knots which admit lens space surgeries: if the complement of

a knot K is covered by another knot complement, then the covering is cyclic and this occurs

if and only if K admits a non-trivial lens space surgery. In this situation, a fundamental

result of Ni [28] implies that K is fibred. Here we show that distinct knots without hidden

symmetries which are commensurable are obtained from primitive knots in orbi-lens spaces

(§3) which admit non-trivial orbi-lens space surgeries. Further, we prove an analogue of

Ni’s result in the orbifold setting:

Theorem 1.5. Let K be a knot in an orbi-lens space L which is primitive in L. If K admits

a non-trivial orbi-lens space surgery, then the exterior of K admits a fibring by 2-orbifolds

with base the circle.
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Our next result is an interesting by-product of the method of proof of Theorem 1.5. For

the definition of a 1-bridge braid in a solid torus we refer to §5.

Proposition 1.6. Let M be the exterior of a hyperbolic 1-bridge braid in a solid torus V .

Then each top-dimensional face of the Thurston norm ball in H2(M,∂M ; R) is a fibred face.

Theorem 1.7. Let K be a hyperbolic knot. If |CC(K)| ≥ 2 then:

(1) K is a fibred knot.

(2) the genus of K is the same as that of any K ′ ∈ CC(K).

(3) the volume of K is different from that of any K ′ ∈ CC(K) \K. In particular, the only

mutant of K contained in CC(K) is K.

(4) K is chiral and not commensurable with its mirror image.

In particular this result holds for a hyperbolic knot K without hidden symmetries and

any K ′ ∈ C(K) \K.

We pause to note the marked difference between the case of flexible and rigid commensu-

rability classes containing knot complements. Recall that the commensurability class of the

two dodecahedral knots [1] is the only known rigid commensurability class containing knot

complements. These knots do not satisfy any of the conditions above: one dodecahedral

knot is fibred, the other isn’t; the knots have different genus; they have the same volume;

the knots are both amphichiral [2, 12.1]. In addition, they are not cyclically commensurable

in contrast with Theorem 1.4.

A knot K is periodic if it admits a non-free symmetry with an axis disjoint from K. As a

consequence of the works of Berge [4] and Gabai [12] we obtain the following characterisation

of cyclic commensurability classes of periodic knots. We refer to §5 for the definitions of

Berge-Gabai knots and unwrapped Berge-Gabai knots.

Theorem 1.8. Let K be a periodic hyperbolic knot. If |CC(K)| ≥ 2 then:

(1) K has a unique axis of symmetry disjoint from K.

(2) K is obtained by unwrapping a Berge-Gabai knot K̄ in an orbi-lens space. In particular

K is strongly invertible.

(3) each K ′ ∈ CC(K) is determined by unwrapping the Berge-Gabai knot represented by the

core of the surgery solid torus in an orbi-lens space obtained by Dehn surgery along K̄.

In particular this result holds for a periodic hyperbolic knot K without hidden symme-

tries and any K ′ ∈ C(K).

The proof of Theorem 1.8 reduces the characterisation of hyperbolic knots K ⊂ S3 such

that |CC(K)| ≥ 2 to the case where Z(K) acts freely on S3 and to the construction of all

primitive knots in a lens space with a non-trivial lens space surgery. It is a result of Bonahon

and Otal [6] that for each g ≥ 1, a lens space admits a unique genus g Heegaard splitting,

which is a stabilization of the genus 1 splitting.

Problem 1.9. Characterize primitive knots K̄ in a lens space L which admit a non-trivial

lens space surgery. In particular, is every such knot a doubly primitive knot on the genus 2

Heegaard surface of L?

Suppose K̄ is in S3. Then this problem is the setting of the Berge conjecture, which

contends that a knot in S3 which admits a non-trivial lens space surgery is doubly primitive.

Doubly primitive knots are knots which lie on the genus 2 Heegaard surface in such a way

that the knot represents a generator of the fundamental group of each handlebody.
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A fundamental result of Schwartz [40] implies that the fundamental groups of two hyper-

bolic knots K,K ′ are quasi-isometric if and only if K ′ is commensurable with K or with its

mirror image. Proposition 5.8 below shows that a knot without hidden symmetries cannot

be commensurable to its mirror image. Therefore, as a consequence of Theorems 1.4, 1.7

and 1.8 we obtain the following results on quasi-isometry classes of knot groups:

Corollary 1.10. Let K be a hyperbolic knot without hidden symmetries. Then there are

at most three knots K ′ with group π1(S
3 \ K ′) quasi-isometric to π1(S

3 \ K). Moreover

π1(S
3 \K) is the unique knot group in its quasi-isometry class in the following cases:

(i) K is not fibred.

(ii) K is amphichiral.

(iii) K is periodic and is not an unwrapped Berge-Gabai knot; for instance, K is periodic

but not strongly invertible.

(iv) K is periodic with two distinct axes of symmetry.

The paper is organized as follows. Theorem 1.4 is proved in §4. Theorem 1.8 and (3)

of Theorem 1.7 are contained in §5. Theorem 1.5, parts (1) and (2) of Theorem 1.7, and

Proposition 1.6 are proven in §6. Part (4) of Theorem 1.7 is proven in §7. Sections 2 and 3

are devoted to conventions and background on certain spherical orbifolds.

Acknowledgements. We thank Jacob Rasmussen for explaining the proof that a knot in

a lens space which admits a non-trivial lens space surgery has fibred complement. We also

benefited from helpful conversations with Walter Neumann and Alan Reid.

2 Slopes, Dehn filling and cusp types

A slope on a torus T is an isotopy class of essential simple closed curves. The set of

slopes on T corresponds bijectively, in the obvious way, with ±-classes of primitive elements

ofH1(T ). Thus to each slope r we associate the primitive classes ±α(r) ∈ H1(T ) represented

by a simple closed curve in the class of r. The distance between two slopes r, r′ on T is

given by ∆(r, r′) = |α(r) · α(r′)|.
Given a slope r on on a torus boundary component T of a 3-manifold M , the r-Dehn

filling of M with slope r is the 3-manifold M(T ; r) := (S1 × D2) ∪f M where f is any

homeomorphism ∂(S1 × D2) → T such that f({∗} × ∂D2) represents r. It is well-known

that M(T ; r) is independent of the choice of f . When there is no risk of ambiguity, we shall

usually denote M(T ; r) by M(r).

Recall that topologically, a cusp of a complete, finite volume, orientable, hyperbolic 3-

orbifold is of the form B×R where B is a closed, connected, orientable, Euclidean 2-orbifold.

In this case, we say that the cusp is a B cusp.

A slope r in a torus cusp of a complete, non-compact, finite volume hyperbolic 3-orbifold

O is a cusp isotopy class of essential simple closed curves which lie on some torus section

of the cusp. Inclusion induces a bijection between the slopes on a torus cross-section of the

cusp with those in the cusp, and we identify these sets below.

Lemma 2.1. Let O be a complete, finite volume, orientable, hyperbolic 3-orbifold which has

one end, a torus cusp, and let r be a slope in this cusp. Then for any orientation-preserving

homeomorphism f : O → O, the slope f(r) equals r.
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Proof. Our assumptions imply that |O| is the interior of a compact, connected, orientable

3-manifold M with torus boundary to which we can extend f . To prove the lemma it suffices

to show that f acts as multiplication by ±1 on H1(∂M). First note that f∗(λM ) = ǫλM

where ǫ ∈ {±1} and λM ∈ H1(∂M) is the rational longitude of M . (Thus ±λM are the

only primitive classes in H1(∂M) ≡ π1(∂M) which are trivial in H1(M ; Q).)

Let ρ : π1(O) → PSL(2,C) be a discrete faithful representation. By Mostow-Prasad

rigidity, there is an element A ∈ PSL(2,C) such that ρ ◦ f# = AρA−1. In particular,

ρ(λM )ǫ = ρ(f#(λM )) = Aρ(λM )A−1.

Without loss of generality we can assume that ρ(λM ) is upper triangular and parabolic.

Then it is easy to verify that A is upper triangular and parabolic when ǫ = 1 or upper

triangular with diagonal entries ±i when ǫ = −1. A simple calculation then shows that

when ǫ = 1, ρ(f#(γ)) = ρ(γ) for each γ ∈ π1(∂M), which implies that f∗ is the identity.

Similarly when ǫ = −1 it’s easy to see that f∗ = −I.

Given two slopes r, r′ in the cusp, the reader will verify that the distance between two

of their representatives contained in some torus cross-section of the cusp is independent of

the cross-section, and we define the distance between r and r′, denoted ∆(r, r′), to be this

number.

Let r be a slope in a torus cusp of O and Ô an orbifold obtained by truncating O along

the cusp. The Dehn filling of O of slope r, denoted O(r), is the r-Dehn filling of Ô.

3 Orbi-lens spaces

We denote the singular set of an orbifold O by Σ(O) throughout the paper.

An orbi-lens space is the quotient orbifold of S3 by a finite cyclic subgroup of SO(4).

We begin by examining their structure.

The first homology group of an orbifold is the abelianisation of its fundamental group.

A knot in an orbi-lens space L is primitive if it carries a generator of H1(L).

Lemma 3.1. Let Z be a finite cyclic subgroup of SO(4) of order n and fix a generator ψ

of Z. There are a genus one Heegaard splitting S3 = V1 ∪ V2, cores C1, C2 of V1, V2, and

integers a1, a2 ≥ 1 such that

(1) both V1 and V2 are Z-invariant.

(2) ψ acts by rotation of order a1 on C1 and order a2 on C2. Moreover, the Z-isotropy

subgroup of a point in
• S3 \ (C1 ∪ C2) is trivial.

• C1 is generated by ψa1 and has order ā2 = n/a1,

• C2 is generated by ψa2 and has order ā1 = n/a2.

Thus n = lcm(a1, a2), ā1 = a1/gcd(a1, a2), ā2 = a2/gcd(a1, a2), so gcd(ā1, ā2) = 1.

(3) |S3/Z| is the lens space with fundamental group Z/gcd(a1, a2) and genus one Heegaard

splitting (V1/Z) ∪ (V2/Z). The ramification index of a point y ∈ |S3/Z| is ā2 if y ∈ C1/Z,

ā1 if y ∈ C2/Z, and 1 otherwise. Hence Σ(S3/Z) ⊆ (C1/Z) ∪ (C2/Z).

Proof. We can find two mutually orthogonal 2-dimensional subspaces of R4 on which ψ acts

by rotation. Thus if we think of these subspaces as the two coordinate planes of C2, ψ has

the form

ψ(z, w) = (e2πiα1/a1z, e2πiα2/a2w)
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where gcd(α1, a1) = gcd(α2, a2) = 1 and n = lcm(a1, a2). The subgroup of Z which

• fixes (z, w) with zw 6= 0 is the trivial subgroup.

• fixes the z-plane is generated by ψa1 and has order ā2 = n/a1 = a2/gcd(a1, a2).

• fixes the w-plane is generated by ψa2 and has order ā1 = n/a2 = a1/gcd(a1, a2).

The genus one Heegaard splitting of S3 given by the two solid tori V1 = {(z, w) : |z|2+|w|2 =

1, |w| ≤ 1/
√

2} and V2 = {(z, w) : |z|2 + |w|2 = 1, |z| ≤ 1/
√

2} is invariant under Z and

determines a genus one Heegaard splitting of |S3/Z(K)|. Further, the isotropy subgroup of

a point (z, w) ∈ S3 is trivial if |zw| 6= 0, Z/ā2 if w = 0, and Z/ā1 if z = 0. The conclusions

of the lemma follow from these observations.

Corollary 3.2. A 3-orbifold L is an orbi-lens space if and only if |L| is a lens space which

admits a genus one Heegaard splitting |L| = V1∪V2 such that Σ(L) is a closed submanifold of

the union of the cores C1, C2 of V1, V2, and there are coprime positive integers b1, b2 ≥ 1 such

that a point of Cj has isotropy group Z/bj. In the latter case, π1(L) ∼= Z/(b1b2|π1(|L|)|).

Proof. Lemma 3.1 shows that an orbi-lens space has the form claimed in the corollary.

Conversely, suppose that L is a 3-orbifold for which |L| ∼= L(p, q) admits a genus one

Heegaard splitting |L| = V1 ∪ V2 such that Σ(L) is a closed submanifold of the union of the

cores C1, C2 of V1, V2, and there are coprime positive integers b1, b2 ≥ 1 such that a point of

Cj has isotropy group Z/bj. It is straightforward to verify that there is a Z/b1b2p-fold cyclic

cover S3 → L whose deck transformations lie in SO(4). Thus L is an orbi-lens space.

We will use L(p, q; b1, b2) to denote the orbifold described in the corollary. As we are

mainly concerned with the case b1 = 1 and b2 = a, we use L(p, q; a) to denote L(p, q; 1, a).

When a = 1, L(p, q; a) is just L(p, q).

4 Proof of Theorem 1.4

We start by proving:

Proposition 4.1. Two hyperbolic knot complements have a finite-index cyclic cover if and

only if they have a finite-index cyclic quotient. Moreover, two cyclically commensurable

hyperbolic knot complements have the same normalizers in PSL(2,C).

Proof. The fact that a common finite-index cyclic quotient implies a common finite-index

cyclic cover is immediate from the isomorphism theorems. Consider the converse then.

Suppose that S3 \K1
∼= H3/Γ1 and S3 \K2

∼= H3/Γ2 have a common finite-index cyclic

cover M ∼= H3/ΓM . We may assume, after conjugating, that ΓM ⊆ Γ1 ∩ Γ2. Since knot

complements have unique cyclic covers of a given order, each isometry of S3 \Kj is covered

by an isometry of M for j = 1, 2. Recall that the cyclic subgroup Z(K) ⊂ Isom+(S3 \K)

acts freely on K and that the orbifold ZK = (S3 \K)/Z(K) has a torus cusp. Let Z̃(K1)

be the subgroup of Isom+(M) covering Z(K1) and define Z̃(K2) similarly. By construction,

Z̃(K1) and Z̃(K2) act freely in the cusp of M and since this cusp is unique, the lift of each

element of Z̃(Kj) to H3 is parabolic (j = 1, 2). Thus Z̃(K1) and Z̃(K2) act by Euclidean

translations in each horotorus of the cusp of M . It follows that Z̃(K1) and Z̃(K2) generate

an abelian subgroup A of Isom+(M) which acts by Euclidean translations in the horotori.

Thus there are regular covers S3 \ Kj → O = M/A for j = 1, 2 where O has a torus
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cusp. These covers are cyclic by [16] and [37, Lemma 4] and so S3 \ K1 and S3 \ K2

have a common cyclic quotient. Since the covering group of M → S3 \ Ki descends to

Z(Kj) by the same argument, M/A = ZK1 = ZK2 . Note, moreover, that there is a cover

S3\K1 → (S3\K2)/Isom+(S3\K2) = H3/N+(Γ2) which is regular by [16] and [37, Lemma

4]. Thus N+(Γ2) ⊆ N+(Γ1). Similarly N+(Γ1) ⊆ N+(Γ2), so these normalizers are equal.

This completes the proof.

An immediate corollary is a strengthened version of [9, Thm2.2] for hyperbolic knots in

S3.

Corollary 4.2. Two hyperbolic knot complements are cyclically commensurable if and only

if they have a common regular finite cover with a single cusp.

Proof. The forward implication is obvious, as a finite cyclic cover of a knot complement has

one cusp. LetK1 andK2 two hyperbolic knots in S3. LetN be the common covering of their

complements, with a single cusp C. Let G1 and G2 be the two associated covering groups.

Then the subgroup G ⊂ Isom+(N) generated by G1 and G2 is finite and acts identically on

H1(C,Z), since G1 and G2 do. So the quotient orbifold O = N/G has a single torus cusp.

By [16] and [37, Lemma 4] the coverings S3 \K1 → O and S3 \K2 → O are cyclic. Hence

Proposition 4.1 shows that S3 \K1 and S3 \K2 are cyclically commensurable.

The following result is a consequence of the fact that a knot complement has a unique

2-fold covering.

Lemma 4.3. Let K be a hyperbolic knot. If K is strongly invertible, ZK is the unique

2-fold covering of O(K) = H3/N+(K) with a torus cusp, up to an orientation-preserving

homeomorphism.

Proof. Set n = |Z(K)| and let Dn denote the dihedral group of order 2n. By hypothesis,

Isom+(S3 \K) ∼= Dn. We have the following exact sequence:

1 → π1(S
3 \K) → π1(O(K))

ϕ→ Dn → 1.

Let O′ be a two-fold cover of O(K) with a torus cusp. Then π1(O′) is an index 2 subgroup

of π1(O(K)) whose image by ϕ is a subgroup G of Dn of index 1 or 2. It is evident that

ker(ϕ|π1(O′)) = π1(S
3 \K) ∩ π1(O′) and [π1(S

3 \K) : ker(ϕ|π1(O′))][Dn : G] = 2.

If G = Dn, then [π1(S
3 \ K) : ker(ϕ|π1(O′))] = 2, so ker(ϕ|π1(O′)) = π1(M) where

M is the unique 2-fold cyclic cover of S3 \K. There is a regular cover M → O′ of group

G = Dn. Thus a strong inversion σ ∈ Isom+(S3 \K) lifts to an involution σ̃ of M . Since

M has one end, which is a torus cusp, it is easy to see that σ̃ acts on its first homology by

multiplication by −1. But then O′ has an S2(2, 2, 2, 2) cusp, contrary to our hypotheses.

Thus [Dn : G] = 2, so |G| = |Z(K)| and ker(ϕ|π1(O′)) = π1(S
3 \K). Therefore S3 \K

covers O′ regularly with group G ≤ Dn = Isom+(S3 \ K). Since O′ has a torus cusp, G

acts freely on K, and so as |G| = |Z(K)|, G = Z(K). Thus O′ = (S3 \ K)/Z(K) = ZK ,

which is what we needed to prove.

Remark 4.4. The method of proof of the previous lemma yields the following stronger

result: Let K be a hyperbolic knot and S3 \ K → O a cover where O is an orientable

3-orbifold with an S2(2, 2, 2, 2) cusp. Then there is a unique 2-fold cover O′ → O such that

O′ has a torus cusp.
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The following proposition and Proposition 4.1 immediately implies assertion (1) of The-

orem 1.4.

Proposition 4.5. Two hyperbolic knots K and K ′ without hidden symmetries are com-

mensurable if and only if there is an orientation-preserving homeomorphism between ZK

and ZK′ . In particular K and K ′ are commensurable if and only if they are cyclically

commensurable.

Proof. If there is an orientation-preserving homeomorphism between ZK and ZK′ then

clearly K and K ′ are commensurable, and in fact cyclically commensurable by Proposition

4.1. We prove the converse by distinguishing two cases:

a) K is not strongly invertible. Then Isom+(S3\K) = Z(K) and since K has no hidden

symmetries, Omin(K) = (S3 \ K)/Z(K) = ZK . In particular Omin(K) has a torus cusp.

Hence if K ′ is commensurable with K, K ′ is not strongly invertible. It follows that ZK′ is

orientation-preserving homeomorphic to Omin(K) = ZK .

b) K is strongly invertible. In this case Omin(K) = (S3 \ K)/Isom+(S3 \ K) has a

flexible cusp with horospherical section S2(2, 2, 2, 2). Hence any knot K ′ commensurable

with K is strongly invertible. The result follows from Lemma 4.3 as ZK and ZK′ are 2-fold

coverings of Omin(K) with torus cusps.

Now suppose that K and K ′ are commensurable knots without hidden symmetries. The

proof shows that S3 \K and S3 \K ′ each cyclically cover ZK . Thus K and K ′ are cyclically

commensurable by Proposition 4.1.

The following theorem is a main step in our study. It immediately implies Theorem

1.4. Recall that the meridinal slope of S3 \K projects to a slope r(K) in the torus cusp of

ZK = (S3 \K)/Z(K)

Theorem 4.6. Suppose that K is a hyperbolic knot and let K ′ be a knot cyclically com-

mensurable with K.

(1) There is an orientation-preserving homeomorphism between ZK and ZK′ .

(2) If r(K) and r(K ′) coincide under some orientation-preserving homeomorphism between

ZK and ZK′ , then K and K ′ are equivalent knots.

(3) If fK′ : ZK′ → ZK is a homeomorphism and rK′ is the slope in the cusp of ZK deter-

mined by fK′(r(K ′)), then ∆(r(K), rK′ ) ≤ 1.

Proof of Theorem 1.4. By Assertion (1) of Theorem 4.6 we can fix an orientation-preserving

homeomorphism fK′ : ZK′ → ZK for each K ′ ∈ CC(K). Let rK′ be the slope in the cusp of

ZK determined by fK′(r(K ′)). Assertion (3) implies that there are at most three slopes in

the set {rK′ : K ′ ∈ CC(K)}, while assertion (2) implies that the function which associates

the slope rK′ to K ′ ∈ C(K) is injective. Thus Theorem 1.4 holds.

Assertion (1) of Theorem 4.6 is the content of the following proposition:

Proposition 4.7. Two hyperbolic knots K and K ′ are cyclically commensurable if and only

if there is an orientation-preserving homeomorphism between ZK and ZK′ .
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Proof. By Proposition 4.1 if the hyperbolic knots K and K ′ are cyclically commensurable

then there is an orientation-preserving homeomorphism between the orbifolds O(K) =

H3/N+(K) and O(K ′) = H3/N+(K ′). Then the proof is the same as the proof of Propo-

sition 4.5 by considering O(K) instead of Omin(K).

Assertion (2) of Theorem 4.6 is given by the following lemma:

Lemma 4.8. Let K and K ′ be two hyperbolic cyclically commensurable knots. If r(K) and

r(K ′) coincide under some orientation-preserving homeomorphism between ZK and ZK′ ,

then K and K ′ are equivalent knots.

Proof. Suppose that r(K) and r(K ′) coincide under some homeomorphism ZK → ZK′ .

Then we have an induced homeomorphism f : (ZK(r(K)),ZK ) → (ZK′(r(K ′)),ZK′). By

construction, ZK(r(K)) ∼= S3/Z(K) so

π : S3 → S3/Z(K) = ZK(r(K))

is a universal cover. In the same way

π′ : S3 → S3/Z(K ′) = ZK′(r(K ′))

is a universal cover. Since universal covers are unique up to covering equivalence, there is a

homeomorphism (preserving orientation) f̃ : S3 → S3 such that π′ ◦ f̃ = f ◦π. In particular,

f̃(S3 \K) = f̃(π−1(ZK)) = π′−1(f(ZK))) = π′−1(ZK′) = S3 \K ′.

Thus the complement of K is orientation-preserving homeomorphic to the complement of

K ′, so K is equivalent to K ′ [19].

With the notations of Lemma 4.8, Assertion (3) of Theorem 4.6 is the content of the

following lemma:

Lemma 4.9. Let K and K ′ be two cyclically commensurable knots and f : ZK′ → ZK

a homeomorphism1. Then ∆(r(K), rK′ ) ≤ 1 where rK′ is the slope in the cusp of ZK

corresponding to f(r(K ′)).

Proof. Set

Z0
K = ZK \N(Σ(ZK))

where N(Σ(ZK)) denotes a small, open tubular neighborhood of Σ(ZK). Then Z0
K has no

singularities. Since Σ(ZK) is a geodesic link in the hyperbolic orbifold ZK , Z0
K admits a

complete, finite volume, hyperbolic structure [44, 39].

By the geometrization of finite group actions [5, 25], we can suppose that Z(K) and

Z(K ′) act orthogonally on S3. It follows that both Dehn fillings of the torus cusp of ZK

along the slopes r(K) and rK′ give orbi-lens spaces LK = ZK(r(K)) = S3/Z(K) and

L′ = ZK(rK′) ∼= ZK′(r(K ′)) = S3/Z(K ′). By Corollary 3.2, |LK | and |L′| are lens spaces,

possibly S3. Moreover the singular set Σ(LK), resp. Σ(L′), is either empty or a sublink of

the union of the cores of the two solid tori in a genus 1 Heegaard splitting of |LK |, resp.

|L′|. Since Z0
K(r(K)) = LK \N(Σ(ZK)) = LK \N(Σ(LK)), we have:

1We do not assume that f preserves orientation.
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Z0
K(r(K)) ∼=





|LK | if |Σ(ZK)| = 0

S1 ×D2 if |Σ(ZK)| = 1

S1 × S1 × [0, 1] if |Σ(ZK)| = 2

In the same way:

Z0
K(rK′) ∼=





|L′| if |Σ(ZK)| = 0

S1 ×D2 if |Σ(ZK)| = 1

S1 × S1 × [0, 1] if |Σ(ZK)| = 2

One can choose slopes on the components ∂N(Σ(Z)) ⊂ ∂Z0
K such that M , the manifold

obtained by Dehn filling Z0
K along these slopes, is hyperbolic. It follows from above that

M(r(K)) and M(r′) have cyclic fundamental groups, so the cyclic surgery theorem [10]

implies that ∆(r(K), rK′ ) ≤ 1.

This completes the proof of Theorem 4.6, and therefore of Theorem 1.4.

We have the following consequence of the proof. A good orbifold is an orbifold which is

covered by a manifold.

Scholium 4.10. Let M be a hyperbolic orbifold with a single torus cusp. If M(r1) and

M(r2) yield good orbifolds with cyclic orbifold fundamental group, then ∆(r1, r2) ≤ 1. In

particular, there are at most 3 such slopes.

Proof. Suppose that the group πorb
1 (M(r1)) is finite cyclic. Then the universal cover is S3

and M is the complement of a knot in an orbi-lens space, and the result follows from the

proof of Lemma 4.9.

Suppose πorb
1 (M(r1)) is infinite cyclic. Since its universal cover is a manifold and its fun-

damental group has no torsion, M(r1) is a manifold and hence M is a hyperbolic manifold.

The result follows from the Cyclic Surgery Theorem [10].

The analysis of the action on the knot complement by a cyclic group of symmetries

as in Lemma 4.9 above along with an observation of M. Kapovich yields the following

characterisation of the minimal element in the commensurability class of a knot complement.

Corollary 4.11. If Omin(K) is the minimal element of a non-arithmetic commensurability

class which contains a knot complement S3 \ K then the underlying space of Omin(K) is

either an open ball or the complement of a knot in a lens space.

Proof. Let Omin(K) be the minimal element of the commensurability class, and Ômin(K)

the associated orbifold with boundary obtained by truncating along the cusp. Since the

boundary of S3 \ N(K) is a torus, ∂Ômin(K) is a closed orientable Euclidean 2-orbifold,

which implies that it either a torus or has underlying space S2. When ∂Ômin(K) is a torus,

the covering is a regular cyclic covering by [16] and [37, Lemma 4]. Therefore, our analysis

in Lemma 4.9 implies that the underlying space of Ômin(K) is a lens space with a regular

neighborhood of a knot removed, and that |Omin(K)| is the complement of a knot in a lens

space. The case when |∂Ômin(K)| is S2 is an observation of M. Kapovich. There is a map

which is the composition S3 \N(K) → Ômin(K) → |Ômin(K)|. The image of π1(S
3 \N(K))

under the induced homomorphism is trivial, as π1(S
3 \N(K)) is normally generated by a

meridian. Therefore if |Ômin(K)| has any non-trivial cover (such as the universal cover) the
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above map S3 \N(K) → |Ômin(K)| lifts to this cover, which is a contradiction as any non-

trivial cover of a manifold with boundary S2 has multiple boundary components. Therefore

|Ômin(K)| has trivial fundamental group and by work of Perelman [25] it is a ball. Hence

Omin(K) has underlying space an open ball.

By [3, Main Theorem], see also [26], Γ ∈ Isom+(H3) is generated by rotations exactly

when the underlying space of H3/Γ is simply-connected. Therefore we have the following

corollary of Corollary 4.11.

Corollary 4.12. A non-invertible hyperbolic knot K has a hidden symmetry if and only if

its group π1(S
3 \K) is commensurable with a Kleinian group generated by rotations.

The following proposition is a consequence of the proof of Theorem 4.6. It states that a

hyperbolic knot K is not unique in its cyclic commensurability class if and only if K̄ ⊂ LK

admits a non-trivial orbi-lens space surgery. More precisely:

Proposition 4.13. A commensurability class contains cyclically commensurable knot com-

plements S3 \K and S3 \K ′ where K ′ 6= K if and only if it contains the complement of a

knot K̄ in an orbi-lens space L such that K̄ is primitive in L and L admits a non-trivial

orbi-lens space surgery L′ along K̄. We may take L \ K̄ to be Zk, with slopes r(K) and r′

yielding the lens spaces L and L′ respectively. If π′ : S3 → L′ is the universal covering and

K̄ ′ ⊂ L′ is the core of the r′-Dehn filling of ZK , then K ′ = π−1(K̄ ′).

This result gives a way of constructing every knot cyclically commensurable with K.

Since the only non-arithmetic knots known to admit hidden symmetries are the two com-

mensurable dodecahedral knots of Aitchison and Rubinstein [1], all the other pairs of com-

mensurable hyperbolic knots constructed so far can be obtained from the construction given

in Proposition 4.13.

Proof of Proposition 4.13. We continue to use the notation developed in the proof of The-

orem 4.6. Suppose a commensurability class C contains cyclically commensurable knot

complements S3 \K and S3 \K ′. By the proof of Theorem 4.1 the quotients Zk and ZK′

are homeomorphic. By the proof of Theorem 4.6, there are distinct slopes r(K) and rK′ , of

Zk such that filling along these slopes produces lens spaces LK and LK′ respectively. Also,

the preimages of the surgery core K̄ in the universal covers of LK and LK′ are the knots

K ⊂ S3 and K ′ ⊂ S3. Since K is a knot, K̄ is primitive in LK . Thus ZK satisfies the

conclusions of the theorem.

Suppose that a commensurability class C contains the complement of a knot in an orbi-

lens space L \ K̄ where K̄ is primitive in L and K̄ admits a non-trivial orbi-lens space

surgery. Then by primitivity, the pre-image of K̄ in the universal cover S3 of L is a knot K.

Since the covering group S3 → L is cyclic, S3 \K cyclically covers L\K̄ ∼= O. Let rK be the

projection of the meridinal slope of S3 \K. Denote the non-trivial orbi-lens space filling of

L\ K̄ by L′ and the filling slope by rK′ . By the proof of Lemma 4.9, ∆(rK , rK′) ≤ 1. Thus

a representative curve for rK′ is isotopic to K̄ in L. It follows that representative curves for

rK and rK′ carry the first homology of L\K̄. Thus the core K̄ ′ of the rK′ -Dehn filling solid

torus in L′ carries a generator of H1(L′) and therefore the pre-image of K̄ ′ in the universal

cover of L′ is a knot in S3. Furthermore, S3 \K ′ cyclically covers O ∼= L′ \ K̄ ′ ∼= L \ K̄.

Therefore, C contains the cyclically commensurable knots S3 \ K and S3 \ K ′. Suppose
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that K is equivalent to K ′. An orientation-preserving homeomorphism S3 \K → S3 \K ′

induces an orientation-preserving homeomorphism f : L \ K̄ → L′ \ K̄ ′. It is evident

that f(r(K)) = r(K ′). By construction we have an orientation-preserving homeomorphism

g : L \ K̄ → L′ \ K̄ ′ such that g(r′) = r(K ′). Thus h = g−1 ◦ f : L \ K̄ → L \ K̄ is

an orientation-preserving homeomorphism such that h(r(K)) = r′. But this is impossible

as Lemma 2.1 would then imply that r′ = r(K). Thus K and K ′ are distinct knots by

Theorem 4.6.

This suggests the following conjecture:

Conjecture 4.14. A rigid commensurability class does not contain cyclically commensu-

rable hyperbolic knot complements.

Theorem 1.8 and Proposition 4.13 reduce the characterisation of hyperbolic knots K ⊂
S3 such that |CC(K)| ≥ 2 to the case where Z(K) acts freely on S3 and to the construction

of all primitive knots in a lens space with a non-trivial lens space surgery. We remark that

the situation is completely understood for the case of orbi-lens spaces:

Proposition 4.15. Let K̄ be a primitive hyperbolic knot in an orbi-lens space L with non-

trivial ramification locus Σ(L). If a non-trivial Dehn surgery along K̄ produces an orbi-lens

space, then K is a Berge-Gabai knot in L \N(Σ(L)).

Proof. Let V1 ∪ V2 be the Heegaard splitting of L where V1 is a regular neighborhood of

Σ(L) and K̄ ⊂ V2. Assume non-trivial surgery along K̄ in L yields an orbi-lens space L′.

By removing neighborhoods of the ramification loci in L and L′, we see that non-trivial

surgery along K̄ in V2 yields a solid torus. Then by Definition 5.4 K̄ is a Berge-Gabai knot

in V2 = L \N(Σ(L)).

5 Unwrapped 1-bridge braids

In this section we prove Theorem 1.8 which characterizes all periodic hyperbolic knots

such that |CC(K)| ≥ 2.

Recall that a 1-bridge braid in a solid torus V is a braid in V which is 1-bridge with

respect to some boundary-parallel torus in int(V ). Connected 1-bridge braids have been

classified in [14].

A cosmetic surgery slope of a knot in a 3-manifold W is a slope on the boundary of

the exterior of the knot whose associated surgery yields a manifold homeomorphic to W .

We say that K has a non-trivial cosmetic surgery if it has such a slope which is distinct

from the knot’s meridian. The following proposition is a consequence of work of Gabai and

Gordon-Luecke.

Proposition 5.1. If a hyperbolic knot K in V ∼= S1 × D2 or V ∼= S1 × S1 × I admits a

non-trivial cosmetic surgery, then V ∼= S1 ×D2 and K is a 1-bridge braid.

Proof. First assume that K is a hyperbolic knot in V ∼= S1×D2. Gabai [12] has shown that

any knot in a solid torus which admits a non-trivial cosmetic surgery is either contained in

a 3-ball or is a 0-bridge braid or is a 1-bridge braid. In our case, hyperbolicity rules out the

first two cases. Thus K is a 1-bridge braid.

The case where K is a hyperbolic knot in V ∼= S1 × S1 × I is ruled out by the following

lemma:
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Lemma 5.2. A hyperbolic knot K in V ∼= S1 × S1 × I admits no non-trivial cosmetic

surgery.

Proof. Assume that there is a non-trivial cosmetic surgery r for K. Then r is a non-trivial

cosmetic surgery slope when K is considered as a knot in any Dehn filling of V along T 2×0.

Choose such a filling in which K remains hyperbolic. The previous argument then implies

that K is not homologically trivial in the Dehn filling of V , and therefore not in V as well.

Then there is an essential simple closed curve C ⊂ T 2 × 0 such that the class in H1(V )

carried by K is an integral multiple of that carried by C. Since the algebraic intersection

of K with the properly embedded, essential annulus A = C × I ⊂ V is nul, A defines a

homology class [A] ∈ H2(V \K, ∂V ) ∼= Z. Let (F, ∂F ) ⊂ (V \K, ∂V ) be a norm minimizing

surface representing the homology class [A]. By a result of Gabai [13, Corollary], F remains

norm minimizing in all manifolds obtained by Dehn surgeries along K except at most one.

Since two such surgeries yield manifolds homeomorphic to S1×S1×I, F must be an essential

annulus, contrary to the hypothesis that K is hyperbolic in V . Thus the lemma holds.

This completes the proof of Proposition 5.1.

Recall the hyperbolic manifold

Z0
K = ZK \N(Σ(ZK))

defined in the proof of Lemma 4.9. It follows from this proof that if |CC(K)| > 1 and

|Σ(ZK)| ≥ 1, then the core K̄ of the Dehn filling Z0
K(r(K)) ∼= S1×D2 or S1×S1×I admits

a non-trivial cosmetic surgery. Hence Proposition 5.1 immediately implies the following

corollary:

Corollary 5.3. If K is a periodic hyperbolic knot and |Σ(ZK)| = 2, then |CC(K)| = 1. In

particular, if K has no hidden symmetry |C(K)| = 1. �

This result implies assertion (1) of Theorem 1.8. Next we examine the case |Σ(ZK)| = 1.

Definition 5.4. A Berge-Gabai knot in a solid torus is a 1-bridge braid in a solid torus

which admits a non-trivial cosmetic surgery slope.

The winding number of a Berge-Gabai knot in a solid torus is the braid index of its

associated 1-bridge braid.

Berge-Gabai knots and their cosmetic surgery slopes have been classified. See [4], [14].

Moreover, it follows from the description given in [14] that these knots can be embedded in

S3 as homogeneous braids and hence as fibred knots by Stallings [41].

Definition 5.5.

(1) Let w, p, q, a be integers with w, a, p ≥ 1 and gcd(p, q) = gcd(w, ap) = 1. A Berge-Gabai

knot K̄ of winding number w in L(p, q; a) consists of a knot K̄ ⊂ L(p, q; a) and a genus

one Heegaard splitting V1 ∪ V2 of |L(p, q; a)| such that K̄ is a Berge-Gabai knot of winding

number w in V1 and Σ(L(p, q; a)) is a closed submanifold of the core of V2.

(2) A (p, q; a)-unwrapped Berge-Gabai knot in S3 is the inverse image of a Berge-Gabai knot

in L(p, q; a) under the universal cover S3 → L(p, q; a).

Note that the inverse image in S3 of a Berge-Gabai knot in L(p, q; a) is connected if and

only if the winding number w of the knot is coprime to ap.
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Lemma 5.6. Suppose that K̄ is a Berge-Gabai knot of winding number w in L(p, q; a) where

p ≥ 1 is coprime with w. Let V1 ∪ V2 be a Heegaard splitting of L(p, q) where K̄ ⊂ int(V1)

and Σ(L(p, q; a)) is a closed submanifold of the core of V2. If r is a non-trivial cosmetic

surgery slope of K̄ considered as a knot in V1, then K̄(r) ∼= L(p′, q′; a) where gcd(p, p′) = 1.

Proof. It is clear that |K̄(r)| has Heegaard genus one, so is L(p′, q′) for some p′ ≥ 0. (We

take the convention that L(0, q′) ∼= S1 × S2.) We must show p′ is non-zero and relatively

prime to p.

Let W be the exterior of K̄ in V1 and write ∂W = T0 ∪T1 where T1 = ∂V1 and T0 is the

boundary of a tubular neighborhood of K̄. There are bases µ0, λ0 of H1(T0) and µ1, λ1 of

H1(T1) such that µ0 is a meridian of K̄, µ1 is a meridian of V1, and µ1 = wµ0, λ0 = wλ1 in

H1(W ).

It is shown in Lemma 3.2 of [14] that r = ±(mµ0 + λ0) where gcd(m,w) = 1. A

homological calculation (see Lemma 3.3 of [18]) shows that µ1(r), the meridian slope of the

solid torus (V1, K̄)(r), is given by µ1(r) = mµ1 + w2λ1. By hypothesis, qµ1 + pλ1 is the

meridian of V2 and therefore

p′ = ∆(µ1(r), qµ1 + pλ1) = ∆(mµ1 + w2λ1, qµ1 + pλ1) = |mp− qw2|.

Since p is coprime to q andw2, it is coprime to |mp−qw2|, and since p ≥ 1 and gcd(m,w) = 1,

|mp− qw2| 6= 0. Thus the lemma holds.

Next we characterize periodic hyperbolic knots K such that |Σ(ZK)| = 1 and |CC(K)| ≥
2. This will finish the proof of Theorem 1.8.

Proposition 5.7. Let K be a hyperbolic knot in S3.

(1) If K is periodic such that |Σ(ZK)| = 1 and |CC(K)| ≥ 2 then

(a) S3/Z(K) = L(p, q; a), where ap = |Z(K)| and the image K̄ of K in L(p, q; a) is

a Berge-Gabai knot of winding number prime to |Z(K)|. Thus K is the (p, q; a)-

unwrapped Berge-Gabai knot associated to the core of the surgery torus in Z0
K(r(K))

∼= S1 ×D2.

(b) K is strongly invertible.

(c) each K ′ ∈ CC(K) \K is a (p′, q′; a)-unwrapped Berge-Gabai knot associated

to the core of the surgery solid torus in Z0
K(r′) where |Z(K ′)| = ap′, gcd(p, p′) = 1,

and r′ = f(r(K ′)) where f : ZK′ → ZK is an orientation-preserving homeomor-

phism.

(2) If K is a (p, q; a)-unwrapped Berge-Gabai knot, then |CC(K)| ≥ 2.

This result holds for a periodic hyperbolic knot K without hidden symmetries and any

K ′ ∈ C(K) \K.

Proof. First suppose that K is a knot without hidden symmetries such that |Σ(ZK)| = 1

and |CC(K)| > 1. Corollary 3.2 shows that S3/Z(K) is an orbi-lens space L(p, q; a) where

ap = |Z(K)|. Let K̄ be the image of K in L(p, q; a). There is a genus one Heegaard

splitting V1 ∪ V2 of L(p, q) such that V1 = Z0
K(r(K)) and V2 is a regular neighborhood of

Σ(L(p, q; a)) = Σ(ZK). It follows from Theorem 4.6 and the proof of Lemma 4.9 that for

K 6= K ′ ∈ C(K), the image of r(K ′) in the cusp of ZK under a homeomorphism ZK′ → ZK

is a non-trivial cosmetic surgery slope of K̄ in V1. Hence, K̄ is a Gabai-Berge knot in V1,
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and as its inverse image in S3 is K, it has winding number coprime to ap = |Z(K)|. Thus

K is a (p, q; a)-unwrapped Berge-Gabai knot.

Note that as K̄ is 1-bridge braid in V1, it lies on a genus 2 Heegaard surface of L(p, q)

(c.f. the proof of Theorem 6.1). It follows that L(p, q; a) admits an orientation-preserving

involution which reverses the orientation of K̄. Hence ZK = (S3 \K)/Z(K) is not minimal

in its commensurability class. It follows that Isom+(S3 \ K) 6= Z(K), so K is strongly

invertible.

Consider K ′ ∈ C(K)\K. Since the hypotheses hold for K ′ in place of K, we see that K ′

is the (p′, q′; a)-unwrapped Berge-Gabai knot associated to the core K̄ ′ of the surgery solid

torus in Z0
K(r′) where |Z(K ′)| = ap′ and r′ is the image in the cusp of ZK of r(K ′) under

an orientation-preserving homeomorphism f : ZK′ → ZK (c.f. Proposition 4.5). Lemma

5.6 implies that gcd(p, p′) = 1. This completes the proof of assertion (1).

Next we prove assertion (2). Suppose that K is a (p, q; a)-unwrapped Berge-Gabai knot.

If ap = 1, then L(p, q; a) = S3. Lemma 5.6 and [23] show that K has a slope r such that

K(r) is a lens space whose fundamental group is non-trivial. This case of assertion (2) then

follows from Proposition 4.13.

If ap > 1, there is a Berge-Gabai knot K̄ in L(p, q; a) whose inverse image under the

universal cover S3 → L(p, q; a) is K. Since Berge-Gabai knots in solid tori admit non-trivial

cosmetic surgeries, Lemma 5.6 implies that there is a non-trivial slope r of K̄ such that

K̄(r) ∼= L(p′, q′; a) where gcd(p, p′) = 1. This final case of assertion (2) now follows from

Proposition 4.13.

We conclude this section with the observation that the characterisation in Proposition

5.7 allows us to show that hyperbolic knot complements with the same volume are not

cyclically commensurable.

Proposition 5.8. Let K be a hyperbolic knot with |CC(K)| ≥ 2. Then:

(1) the volume of K is different from that of any K ′ ∈ CC(K) \K.

(2) the only mutant of K contained in CC(K) is K.

(3) if K is commensurable with its mirror image, it is amphichiral.

This result holds for a hyperbolic knot K without hidden symmetries and any K ′ ∈
C(K) \K.

Proof. First we prove that if K ′ ∈ CC(K) is distinct from K, then the cyclic groups Z(K)

and Z(K ′) have distinct orders. This will imply that K and K ′ have distinct volumes since

vol(S3 \K) = |Z(K)|vol(ZK) 6= |Z(K ′)|vol(ZK) = vol(S3 \K ′).

Suppose that Z(K) acts freely on S3. Then LK is a lens space of the form L(c, d) where

c = |Z(K)|. Let M denote the exterior of K̄ in L(c, d) and note that as K̄ is primitive,

H1(M) ∼= Z. Hence there is a basis µ̄, λ̄ of H1(∂M) such that the image of µ̄ in H1(M)

generates while the image of λ̄ is trivial. Clearly, the meridinal slope of K̄ represents cµ̄+eλ̄

in H1(∂M) for some integer e. Similarly LK′ is a lens space L(c′, d′) where c′ = |Z(K ′)|,
so the meridinal slope of K̄ ′ represents c′µ̄ + e′λ̄. The cyclic surgery theorem [10] implies

that ±1 = ce′ − ec′, so gcd(c, c′) = 1. Note that we cannot have c = c′ = 1 as otherwise

some non-trivial surgery on a hyperbolic knot in S3 would yield S3, contrary to [19]. Thus

c 6= c′, so the proposition holds when Z(K) acts freely on S3.

Suppose next that Z(K) does not act freely on S3. By Proposition 5.7, K is a (p, q; a)-

unwrapped Berge-Gabai knot and K ′ is a (p′, q′; a)-unwrapped Berge-Gabai knot where p
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and p′ are coprime by Lemma 5.6 and a > 1. Since |Z(K)| = ap and |Z(K ′)| = ap′, it

follows that |Z(K)| 6= |Z(K ′)| unless p = p′ = 1. Assume p = p′ = 1. There is a Heegaard

splitting |L(1, q; a)| = V1 ∪ V2 where the singular set of L(1, q; a) is the core C2 of V2 and

a hyperbolic Berge-Gabai knot K̄ ⊂ V1 ⊂ L(1, q; a) such that K is the inverse image of

K̄ in S3. Since C2 is unknotted in |L(1, q; a)| ∼= S3, Corollary 3.5 of [14] implies that its

image is knotted in |L(1, q; a)| ∼= S3. But this contradicts the fact that the image of C2 in

|L(1, q′; a)| is the core of a Heegaard solid torus. Hence we cannot have p = p′ = 1. This

completes the proof that Z(K) and Z(K ′) have distinct orders and therefore that K and

K ′ have distinct volumes.

Since mutant hyperbolic knots have the same volume, K and K ′ cannot be mutant.

Similarly hyperbolic knots which are mirror images of each other have the same volume so

as K ′ 6= K, K ′ cannot be the mirror image of K.

6 Fibred knots

In this section we prove that any hyperbolic knot without hidden symmetries and with

|CC(K)| ≥ 2 is fibred (Theorem 1.7(1)).

We divide the proof of Theorem 1.7(1) into two cases according to whether K is periodic

or not.

6.1 K is periodic

Here we prove a fibering theorem for 1-bridge braid exteriors and apply it to deduce the

periodic case of Theorem 1.7(1).

Theorem 6.1. Let K be a 1-bridge braid on n strands in a solid torus V . For any essential

simple closed curve C on ∂V whose algebraic winding number in V is coprime to n there

is a locally trivial fibring of the exterior of K in V by surfaces whose intersection with ∂V

has n components, each a curve parallel to C.

Corollary 6.2. An unwrapped Berge-Gabai knot is a fibred knot.

Proof of Corollary 6.2. Let K be an unwrapped Berge-Gabai knot in S3. Then K is the

inverse image in S3 of a Berge-Gabai knot K̄ ⊂ L(p, q; a) of winding number n, say, under

the universal cover S3 → L(p, q; a). Thus there is a genus one Heegaard splitting V1 ∪ V2 of

|L(p, q; a)| such that K̄ is a Berge-Gabai knot of winding number n in V1 and Σ(L(p, q; a)) is

a closed submanifold of the core C2 of V2. As |L(p, q; a)| = L(p, q), the algebraic intersection

number of a meridian curve of V1 with one of V2 is ±p. By definition, gcd(p, n) = 1, so

Theorem 6.1 implies that there is a locally trivial fibring of the exterior of K̄ by surfaces

which intersect ∂V in curves parallel to the meridian of V2. Therefore we can extend the

fibration over the exterior of K in L(p, q) = |L(p, q; a)| in such a way that it is everywhere

transverse to Σ(L(p, q; a)). Hence the fibration lifts to a fibring of the exterior of K.

Proof of Theorem 6.1. Let K be the closed 1-bridge braid contained in the interior of a

solid torus V determined by the three parameters:

• n, the braid index of K;

• b, the bridge index of K;

• t, the twisting number of K.
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See [14] for an explanation of these parameters and Figure 1 for an example. (Our conven-

tions differ from those of [14] by mirroring and changing orientation. This modification is

convenient for presenting the knot’s fundamental group.)

Figure 1: The Fintushel-Stern knot (n = 7, b = 2, t = 4). The curve x′ is obtained from the arc labeled x′ by

closing it in the boundary of the tunnel with an arc parallel to the bridge and y′ is obtained similarly by closing

the arc y′ in the boundary of the tunnel. Here R is: y x y x x y x x y−1x−1y−1x−1x−1y−1x−1x−1.

Number the braid’s strands successively 0 to n− 1 and let σi denote the ith elementary

braid in which the ith strand passes over the (i + 1)st. The braid associated to K has

the following form: β(K) = σb−1 · · ·σ0δ
t where δ = σn−2 · · ·σ0 is the positive 2π/n twist.

Denote by π the permutation of Z/n determined by β(K). It has the following simple form:

(1) π(a) =





a+ t+ 1 if 0 ≤ a < b

t if a = b

a+ t if b < a < n

for some a ∈ ā. As K is a knot, π is an n-cycle.

Let T1 = ∂V and T2 = ∂N(K) the boundary of a closed tubular neighborhood of K in

int(V ). There is a meridian class µ1 ∈ H1(T1) well-defined up to ±1 and represented by

the boundary of a meridian disk of V1. Let λ1 ∈ H1(T1) be any class which forms a basis of

H1(T1) with µ1. Then λ1 generates H1(V ).

Let M denote the exterior of K in V and fix an essential simple closed curve C on ∂V .

We are clearly done if C is a meridian curve of V , so assume that this is not the case. Then

we can orient C and find coprime integers p ≥ 1, q so that

[C] = qµ1 + pλ1 ∈ H1(T1)

Note that p is the algebraic winding number of C in V . Assuming that gcd(p, n) = 1 we

must show that there is a locally trivial fibring ofM by surfaces which intersect ∂V in curves

parallel to C. The tools we use to prove this are Brown’s theorem [8] and Stallings’ fibration

criterion [42]. See also [32] where a similar argument is invoked; our proof is only slightly

more involved. Brown’s theorem gives necessary and sufficient conditions under which a

homomorphism from a two-generator one-relator group to Z has finitely generated kernel

and Stallings’ theorem produces a fibration of a 3-manifold given such a homomorphism of

its fundamental group. More precisely:
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Theorem 6.3. (Theorem 4.3 and Proposition 3.1 of [8]) Let G = 〈x, y : R〉 be a two-

generator one-relator group with R = R1R2 . . . Rm, Ri ∈ {x, x−1, y, y−1}, a cyclically re-

duced and non-trivial relator. Let S1, . . . Sm be the proper initial segments of the relator R,

i.e. Si = R1 . . . Ri−1. Finally let ϕ : G→ R be a non-zero homomorphism. If ϕ(x) 6= 0 and

ϕ(y) 6= 0, then ker(ϕ) is finitely generated if and only if the sequence {ϕ(Si)}m
i=1 assumes

its maximum and minimum values exactly once.

It is easy to see that the exterior M of K is homeomorphic to a genus 2 handlebody

with a 2-handle attached to it. Start with a solid torus U ′ ⊂ int(V ) obtained by removing

a small open collar of T1 in V . Denote ∂U ′ by T3. As K is 1-bridge, it can be isotoped into

U ′ so that the bridge is a properly embedded arc and its complement, γ say, is contained

in T3. Fix a disk neighborhood D ⊂ T3 of γ and let α = ∂D. Let U be the exterior of the

bridge in U ′, a genus two handlebody. We can assume that T3 \ ∂U ⊂ int(D) and therefore

α ⊂ ∂U . By construction, α bounds a 2-disk properly embedded in V \ U (i.e. a copy of

D isotoped rel ∂D into V \ U). It is easy to see that M is a regular neighborhood of the

union of U and this disk.

The fundamental group of U is free on two generators x, y represented by two curves in

T3 representing λ1. (See Figure 1.) There are a pair of dual curves x′, y′ ⊂ ∂U to these

generators. This means that

• x′ and y′ bound disks in U ;

• x intersects x′ transversely in one point and is disjoint from y′;

• y intersects y′ transversely in one point and is disjoint from x′.

See Figure 1. The word R ∈ π1(U) in x, y represented by the curve α can be read off in the

usual way: each signed intersection of α with x′, resp. y′, contributes x±1, resp. y±1, while

traveling around α.

We introduce the auxiliary function f : Z/n \ {b̄} → {x, y} given by:

(2) f(ā) =

{
y if 0 ≤ a < b

x if b < a < n

for some a ∈ ā. Let wj = f(πj(b̄)) and consider the word w = w1w2 . . . wn−1. Then

R = ywxy−1w−1x−1. To see this, start with y from the base point ω (c.f. Figure 1); then

follow the knot until the b strand, which contributes w; then turn at the lower foot of the

handle, which contributes xy−1; then walk along the knot in the opposite direction until

the strand b is reached, which contributes w−1; then close by passing x′, which contributes

to the final x−1. Notice that R is cyclically reduced. It follows that

π1(M) = 〈x, y : ywxy−1w−1x−1〉

Let µ2 ∈ H1(T2) be a meridinal class of K. The reader will verify that we can choose

the longitudinal class λ1 for V , a longitudinal class λ2 ∈ H1(T2) for K, and possibly replace

µ1 by −µ1 so that in H1(M):

• nλ1 = λ2;

• µ1 = nµ2;

• [yx−1] = µ2 (i.e. [yx−1] is represented by a meridian of K at the bridge);

• λ1 + tµ2 = [x] (i.e. λ1 and [x] co-bound an annulus in V which K punctures t times).
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Consider the homomorphism π1(U) → Z which sends x to pt−nq 6= 0 and y to pt−nq+p 6=
0. Since the exponent sum of both x and y in R is zero, it induces a homomorphism

ϕ : π1(M) → Z. Since gcd(p, nq) = 1, ϕ is surjective. From the above, it can then be

verified that ϕ(λ1) = −nq and ϕ(µ1) = np. Hence ϕ(µq
1λ

p
1) = 0.

Lemma 6.4. Let S1, S2, . . . , S2n+2 be the proper initial segments of R = ywxy−1w−1x−1 =

R1R2 . . . R2n+2 where Ri ∈ {x, x−1, y, y−1}. Then the sequence {ϕ(Si)}2n+2
i=1 achieves its

maximum and minimum values exactly once.

Proof. By construction, ϕ(x) 6= 0, ϕ(y) 6= 0, and ϕ(y) > ϕ(x). The conclusion of the

lemma is easily seen to hold when ϕ(x) and ϕ(y) have the same sign, so assume that

ϕ(x) < 0 < ϕ(y).

Set S = max{ϕ(Si) : 1 ≤ i ≤ 2n+ 2} and s = min{ϕ(Si) : 1 ≤ i ≤ 2n+ 2}.
Since ϕ(x) < 0 < ϕ(y) we have

(3)





s ≤ ϕ(Sn+2) < ϕ(Sn+1) < ϕ(Sn) ≤ S

s ≤ ϕ(Sn+i) = ϕ(Sn−i+2) + ϕ(x) − ϕ(y) < ϕ(Sn−i+2) ≤ S for 3 ≤ i ≤ n+ 1

s ≤ ϕ(S2n+1) = ϕ(S2n+2) + ϕ(x) < ϕ(S2n+2) = 0 < ϕ(y) = ϕ(S1) ≤ S

Thus the maxima of {ϕ(Si)}2n+2
i=1 can only occur in the sequence ϕ(S1), ϕ(S2), . . . , ϕ(Sn)

and the minima in ϕ(Sn+2), ϕ(Sn+3), . . . , ϕ(S2n+1).

We look at the maxima of {ϕ(Si)}2n+2
i=1 first. Suppose that 1 ≤ l < r ≤ n. We claim that

ϕ(Rl+1) + · · · + ϕ(Rr) 6≡ 0 (mod n). If so, ϕ(Sl) 6= ϕ(Sr) and therefore S occurs precisely

once amongst the values {ϕ(Si)}n
i=1.

Let ϕ be the reduction of ϕ modulo n. Since gcd(p, n) = 1, we can define

ϕ̂ = p−1ϕ : π1(M) → Z/n

Then ϕ̂(x) = t and ϕ̂(y) = t+ 1 and therefore

ϕ̂(f(a)) = π(a) − a

for all a ∈ Z/n \ {b}. Hence ϕ̂(Rl+1)+ · · ·+ ϕ̂(Rr) = ϕ̂(wl)+ · · ·+ ϕ̂(wr−1) = ϕ̂(f(πl(b)))+

· · ·+ ϕ̂(f(πr−1(b))) = (πl+1(b)−πl(b))+ · · ·+(πr(b)−πr−1(b)) = πr(b)−πl(b). Since π is an

n-cycle and 1 ≤ l < r ≤ n we see that πr(b) 6= πl(b). It follows that ϕ(Rl+1)+ · · ·+ϕ(Rr) 6≡
0 (mod n).

The uniqueness of the minimum follows along the same lines. We saw above that the min-

ima of {ϕ(Si)}2n+2
i=1 only occur in ϕ(Sn+2), ϕ(Sn+3), . . . , ϕ(S2n+1). As before, ϕ(Rl+1)+· · ·+

ϕ(Rr) 6≡ 0 (mod n) for all n+2 ≤ l < r ≤ 2n+1 and therefore ϕ(Sn+2), ϕ(Sn+3), . . . , ϕ(S2n+1)

are pairwise distinct. This implies the desired conclusion.

We can now complete the proof of Theorem 6.1. The previous lemma couples with

Theorem 6.3 to show that the kernel of ϕ is finitely generated. Stallings’ fibration criterion

[42] implies that M admits a locally trivial surface fibration with fibre F such that π1(F ) =

ker(ϕ). Since ϕ(µ1) = np 6= 0 while ϕ(µq
1λ

p
1) = 0, ker(ϕ|π1(T1)) is the infinite cyclic subgroup

of π1(T1) generated by [C]. Hence the fibration meets T1 in curves parallel to C. To complete

the proof, we must show that the intersection of a fibre F with T1 has n components.
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To that end, note that as ϕ is surjective we can orient F so that for each ζ ∈ H1(M)

we have ϕ(ζ) = ζ · [F ]. Let φ1 ∈ H1(M) be the class represented by the cycle F ∩ T1 with

the induced orientation. Clearly, φ1 = ±|F ∩ T1|[C]. Since ϕ(λ1) = −nq and ϕ(µ1) = np,

ϕ(π1(T1)) = nZ. Thus if ζ ∈ H1(M) is represented by a dual cycle to [C] on T1, then

n = ϕ(ζ) = ζ · [F ] = |ζ · φ1| = ||F ∩ T1|ζ · [C]| = |F ∩ T1|

This completes the proof.

Proof of Proposition 1.6. Let K be a hyperbolic 1-bridge braid on n strands in a solid

torus V . We use the notation developed in the proof of Theorem 6.1. In particular, M

is the exterior of K in V and H1(M) ∼= Z ⊕ Z with basis λ1, µ2. By construction there

are classes ξ1, ξ2 ∈ H2(M,∂M) such that if ∂ : H2(M,∂M) → H1(∂M) is the connecting

homomorphism, then ∂ξ1 = µ1 − nµ2 and ∂ξ2 = nλ1 − λ2. Since |λ1 · ξj | = δ1j and

|µ2 · ξj | = δ2j , {ξ1, ξ2} is a basis for H2(M,∂M) ∼= H1(M) ∼= Z ⊕ Z.

Consider the homomorphism ψ given by the composition H2(M,∂M)
∂−→ H1(∂M) =

H1(T1) ⊕H1(T2) → H1(T1). Then ψ(aξ1 + bξ2) = aµ1 + nbλ1, and therefore ψ is injective.

Let p, q be coprime integers such that gcd(n, p) = 1. According to Theorem 6.1, there is a

fibre F in M which can be oriented so that ψ([F ]) = [F ∩T1] = nqµ1+npλ1 = ψ(nqξ1+pξ2).

Hence [F ] = nqξ1 + pξ2 so that nqξ1 + pξ2 is a fibre class in H2(M,∂M).

Fix coprime integers a, b and consider the class ξ = aξ1+bξ2. The proposition will follow

if we can show that the projective class of ξ can be arbitrarily closely approximated by fibre

classes [43, Theorem 2]. By the previous paragraph ξ is a fibre class when a = 0, so suppose

this is not the case. It suffices to show that b
a = limm

bm

am
where amξ1 + bmξ2 are fibre

classes. This is easy to verify: for each integer m > 0 set pm = nmba+ 1 and qm = mb2.

Then gcd(pm, nqm) = 1 and from the previous paragraph we see that nqmξ1 + pmξ2 is a

fibre class. Finally, limm
nqm

pm
= b

a , which completes the proof.

6.2 K is not periodic

In this case, Z(K) is generated by a free symmetry of the pair (S3,K). Then ZK is

a complete hyperbolic 3-manifold with a torus cusp and ZK(r(K)) = LK is a lens space

L(p, q). The image K̄ of K in ZK(r(K)) is primitive, since its preimage in the universal

cover S3 has one component. Since |CC(K)| > 1, Proposition 4.13 shows that there is

another slope r′ in the torus cusp of ZK such that ZK(r′) is a lens space L(p′, q′). The

following key result has been explained to us by Jake Rasmussen.

Theorem 6.5. Let K be a primitive knot in Y = L(p, q) which admits a non-trivial lens

space surgery. Then K is fibred.

This theorem shows that ZK is a surface bundle over the circle, and since there is an

unbranched cover S3 \K → ZK , K is a fibred knot. Many, though not all, of the elements

of the proof of Theorem 6.5 are contained in [36]. Owing to its importance to this paper,

we include a proof here.

Proof of Theorem 6.5. The analogous result is known to be true for knots in the 3-sphere

[28]: If a knot K ⊂ S3 has a lens space surgery, then K is fibred. The proof of Ni’s result

uses the Heegaard-Floer homology package developed by Ozsváth and Szabó in [33, 31] and

extended to sutured manifolds by Ni and Juhasz [28, 21]. The essential property of lens
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spaces which is invoked is that they are L-spaces, which are rational homology spheres with

Heegaard-Floer homology as simple as possible (c.f. [32]). Our situation is similar in that

both the initial and the surgered manifold are L-spaces, and our proof follows that of the

S3 case.

Let µK denote the meridinal slope of K and λ 6= µK a slope whose associated surgery

yields a lens space. By the cyclic surgery theorem, ∆(λ, µK) = 1, so any representative

curve for λ runs parallel to K.

We find it convenient to use the notation from [35] even though it is somewhat different

from that used elsewhere in the paper. We review this notation here.

We use K to denote the knot K with a choice of orientation. Dehn surgery on K with

slope λ will be written Yλ(K). In [35], Ozsváth and Szabó compute the Heegaard-Floer

homology of manifolds obtained by surgery on knots in rational homology spheres in terms

of the knot filtration on the chain complex whose homology is the Heegaard-Floer homology

of the ambient manifold. Based on this, Rasmussen computes the knot Floer homology of

knots in lens spaces which admit integer homology L-space surgeries [36, Lemma 4.7]. The

strategy here is to do the same calculation for knots admitting general L-space surgeries

and then to pass to the Floer homology of a certain sutured manifold.

One can associate a doubly pointed Heegaard diagram (Σ,α,β, w, z) which determines

(Y,K), from which Ozsváth and Szabó construct a chain complex CFK∞(Σ,α,β, w, z)

as follows. The generating set is {[x, i, j] : x ∈ Tα ∩ Tβ , i, j ∈ Z} where Tα and Tβ are

two totally real tori in the symmetric product Symg(Σ) which is endowed with an almost

complex structure. The differential counts certain pseudoholomorphic disks connecting the

generators with the boundary mapping to Tα ∪ Tβ . The two basepoints w and z give rise

to codimension 2 submanifolds {w} × Symg−1(Σ), resp. {z}× Symg−1(Σ). The indices i, j

are employed in order to keep track of the intersection of the holomorphic disks with the

two submanifolds above. More precisely:

∂∞[x, i, j] =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y),µ(φ)=1

#

(
M (φ)

R

)
· [y, i− nw(φ), j − nz(φ)],

where π2(x,y) denotes the homotopy class of disks connecting x and y, µ(φ) is the

Maslov index of φ, #
(

M (φ)
R

)
is the count of holomorphic representatives of φ, nw(φ) =

#φ ∩
(
{w} × Symg−1(Σ)

)
, and similarly for nz(φ). Note that nw(φ) ≥ 0, nz(φ) ≥ 0 since

the submanifolds involved are almost complex. Therefore the i, j indices define a Z ⊕ Z

filtration on CFK∞(Y,K).

The non-triviality of φ ∈ π2(x,y) is homologically obstructed and as consequence the

complex CFK∞(Y, K̄) splits into summands which are in bijection with Spinc structures on

Y. Following Turaev [45] Spinc structures can be seen as homology classes of non-vanishing

vector fields and they form an affine space over H2(Y ). From the combinatorics of the

Heegaard diagram one can construct a function sw : Tα ∩ Tβ → Spinc(Y ) which sends an

intersection point x to the homology class of a vector field. There is also a relative version,

Spinc(Y,K), which consists of homology classes of vector fields on Y \ N(K) which point

outwards at the boundary; one has an analogous map sw,z : Tα ∩ Tβ → Spinc(Y,K) [35,

Section 2.4]. Spinc(Y,K) is an affine space over H2(Y,K).

One can extend a vector field on Y \N(K) to a vector field on Y such that the (oriented)

knot is a closed trajectory. This gives rise to a map GY,K : Spinc(Y,K) → Spinc(Y ) which

is equivariant with respect to the action of H2(Y,K) : GY,K(ξ + k) = GY,K(ξ) + ι∗(k).
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where ι∗ : H2(Y,K) → H2(Y ) is the natural map induced by inclusion. Moreover, given

ξ, η ∈ Spinc(Y,K), GY,K(ξ) = GY,K(η) ⇐⇒ ξ = η + n · PD[µ] for some n ∈ Z where

µ is a meridian of K. There is an analogous map GYλ(K),K : Spinc(Y,K) → Spinc(Yλ(K))

which extends the vector fields on Y \ N(K) to Yλ(K) such that the induced knot K ′ in

the surgered manifold becomes a trajectory with the orientation inherited from K. See [35,

Section 6].

For x,y ∈ Tα ∩ Tβ such that there exists φ ∈ π2(x,y), we have: sw,z(x) − sw,z(y) =

(nz(φ)−nw(φ)) ·PD[µ] [35, Lemma 2.1]. This splits CFK∞(Y,K) into various summands:

Fix ξ ∈ Spinc(Y,K). The subgroup Cξ := {[x, i, j] ∈ CFK∞(Y,K) : sw,z(x) + (i − j) ·
PD[µ] = ξ} becomes a subcomplex of CFK∞(Y,K).

Ozsváth and Szabó consider the induced complexesAξ(Y,K) andBξ(Y,K) as ingredients

in the Morse surgery formula: The complex Aξ(Y,K) := Cξ{max(i, j) = 0} with the induced

differential from the complex CFK∞(Y,K) computes the Heegaard Floer homology of large

enough integral surgeries on K in a particular Spinc structure [35, Theorem 4.1]. Since

χ(ĤF (M, s)) = 1 for all s ∈ Spinc(M) where M is any rational homology sphere [34,

Theorem 5.1] and framed surgeries on K are rational homology spheres, we have that

rank(H∗(Aξ(Y,K))) ≥ 1.

By definition, Bξ(Y,K) := Cξ {i = 0} computes ĤF (Y,GY,K(ξ)). In addition, Cξ{j = 0}
is identified with Bξ+PD[Kλ], where Kλ is the knot K pushed off inside Y \N(K) along the

framing λ. See [35, Proposition 3.2] for an explanation of the grading shift.

Consider also the maps vξ, resp. hξ, the natural projections Cξ{max(i, j) = 0} →
Cξ {i = 0}, resp. Cξ{max(i, j) = 0} → Cξ {j = 0} .

By [35, Theorem 4.1] they are identified with the induced maps in ĤF by the natural

cobordism W ′
m(K) between Yλ(K) and Y equipped with corresponding Spinc structures.

We can now state the surgery formula for the “hat” version of Heegaard-Floer homol-

ogy. This corresponds to taking δ = 0 in [35, Theorem 6.4]. See [35, Section 2.8] for an

explanation. We therefore drop the δ indice in what follows:

Theorem 6.6. [35, Theorem 6.4] Fix a Spinc structure s ∈ Spinc(Yλ(K)). Then

(4) ĤF (Yλ(K), s) ∼= H∗(Cone(Ds : As(Y,K) → Bs(Y,K)))

where

As(Y,K) =
⊕

{ξ∈Spinc(Yλ(K),K)|G
Yλ(K),K

(ξ)=s}

Aξ(Y,K)

and

Bs(Y,K) =
⊕

{ξ∈Spinc(Yλ(K),K)|G
Yλ(K),K

(ξ)=s}

Bξ(Y,K)

The map Ds is defined as follows:

Ds

(
{aξ}ξ∈G−1

Yλ(K),K
(s)

)
= {bξ}ξ∈G−1

Yλ(K),K
(s)

with bξ = hξ−PD[Kλ](aξ−PD[Kλ]) − vξ(aξ).
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In our case, both Y and Yλ(K) are lens spaces, hence L-spaces [32]. ThusH∗(Bξ(Y,K)) ∼=
Z for any ξ ∈ Spinc(Y,K) and H∗(Cone(Ds)) ∼= Z for any s ∈ Spinc(Yλ(K)) by Theorem

6.6. In fact for any field F, H∗(Bξ(Y,K); F) ∼= F and H∗(Cone(Ds); F) ∼= F.

Lemma 6.7. After a possible change of orientation of the ambient manifold Y, H∗(Aξ(Y,K)) ∼=
Z for any ξ ∈ Spinc(Y,K).

Proof. This lemma is a slight generalisation of [36, Lemma 4.6]. It is only applied to a

summand corresponding to the particular Spinc structure s. Write the rational longitude of

K as a · µ + p · λ for some a ∈ Z \ {0} . By changing the orientation of Y if necessary one

can assume a < 0.

The proof of Proposition 4.13 shows that K ′ ⊂ Yλ(K) is primitive in Yλ(K). The map

GYλ(K),K is affinely modeled on the canonical projection: π : Z → Z/m wherem is the order

of H2(Yλ(K)) and π is the map i∗ induced in cohomology i∗ : H2(Yλ(K),K) → H2(Yλ(K)),

see [35, Section 2.2]. Therefore the groups (Aξ)ξ∈G−1

Yλ(K),K
(s) form an affine copy of m · Z

in Z ∼= Spinc(Y,K) and adding PD[Kλ] corresponds to a translation by m. By [35, Lemma

6.5] and the assumption a < 0, for sufficiently large n > n+ the map vξ+n·PD[Kλ] :

Aξ+n·PD[Kλ](Y,K) → Bξ+n·PD[Kλ](Y,K) is an isomorphism and hξ+n·PD[Kλ] : Aξ+n·PD[Kλ](Y,K) →
Bξ+(n+1)·PD[Kλ](Y,K) is trivial. If n is sufficiently small, n < n−, vξ+n·PD[Kλ] is trivial

and hξ+n·PD[Kλ] is an isomorphism.

In general, the homology of the mapping cone of Ds is an extension of Ker((Ds)∗)

by Coker((Ds)∗) [46, Chapter 1]. Using homology with field (F) coefficients, this ex-

tension splits: h∗(Cone(Ds)) ∼= Ker((Ds)∗) ⊕ Coker((Ds)∗). Another way to say this is:

H∗(Cone(Ds)) ∼= H∗(X) where X is the short chain complex:

0 - H∗(As(Y,K); F)
(Ds)∗

- H∗(Bs(Y,K); F) - 0

[36, Theorem 4.1]

Owing to the behavior of Ds|Aξ+n·PD[Kλ](Y,K) for large, resp. small, n, the chain

complex X splits into an infinite sum of acyclic subcomplexes:

0 - H∗(Aξ+n·PD[Kλ](Y,K); F)
(hξ+n·PD[Kλ ])∗

∼=
- H∗(Bξ+n·PD[Kλ](Y,K); F) - 0

for n > n+,

0 - H∗(Aξ+n·PD[Kλ](Y,K); F)
(vξ+n·PD[Kλ ])∗

∼=
- H∗(Bξ+(n+1)·PD[Kλ](Y,K); F) - 0

for n < n−, and the nontrivial subcomplex between the groups Aξ+n−·PD[Kλ](Y,K) and

Aξ+n+·PD[Kλ](Y,K):

Aξ+n−·Kλ
Aξ+(n−+1)·Kλ

. . . Aξ Aξ+Kλ
. . . Aξ+n+·Kλ

Bξ+(n−+1)·Kλ

v

?

h
ξ+

n
−

·K
λ -

. . .

h
ξ(n

−
+
1)
·K

λ
-

Bξ

vξ

?
-

Bξ+Kλ

v

?

h
ξ

-

. . .

h
ξ+

·K
λ

-

Bξ+n+·Kλ

vξ+n+·Kλ

?
-
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Since H∗(X; F) ∼= H∗(Bξ+n·PD[Kλ](Y,K); F) ∼= F, rank(H∗(Aξ+n·PD[Kλ](Y,K); F)) ≥ 1

and the number ofA groups is one greater than that ofB groups, we haveH∗(Aξ+n·PD[Kλ](Y,K); F) ∼=
F. Since F was arbitrary, the universal coefficient theorem implies that H∗(Aξ(Y,K)) ∼=
Z.

This phenomenon was studied in [32] for knots in S3. The result is purely algebraic, so

it extends to our situation. As in the previous lemma, the proof is the same. The only

change is that it is applied to a summand in the knot filtration corresponding to a fixed

Spinc structure on Y .

Lemma 6.8. ([32, Lemmas 3.1 and 3.2]) Under the conditions above, ĤFK(Y,K, ξ) is

either Z or 0 for any ξ ∈ Spinc(Y,K).

Proof. Fix ξ ∈ Spinc(Y,K). Lemmas 3.1 and 3.2 in [32] apply to a general Z⊕Z filtered chain

complex C. We take C to be Cξ, notice that C {max(i, j) = 0} corresponds to Aξ(Y,K) and

C {max(i, j −m) = 0} corresponds to Aξ+m·PD[µ](Y,K); in particular the hypotheses of the

two lemmas are satisfied. One can therefore apply the argument in the proof of Theorem

1.2 in [32] and the conclusion follows.

Juhasz defined an Ozsváth-Szabó-type invariant ([21]) called sutured Floer homology

- SFH for (balanced) sutured manifolds (M,γ). (See also [28].) One can construct a

balanced sutured manifold Y (K) starting from a knot K by removingN(K) and considering

as sutures two copies of the meridian with opposite orientations. It is easy to see that

SFH(Y (K)) ∼= ĤFK(Y,K) by a natural identification between the corresponding chain

complexes. [21, Proposition 9.2].

The invariant SFH also decomposes into different summands corresponding to Spinc

structures on Y (K) which are in affine bijection with H2(Y (K), ∂Y (K)), hence in bijec-

tion with Spinc(Y,K). The isomorphism above preserves the splitting along relative Spinc

structures. The invariant SFH proves to be very strong in detecting tautness and products:

Theorem 6.9. ([22]) Let (M,γ) be an irreducible, balanced sutured manifold. Then (M,γ)

is taut if and only if SFH(M,γ) 6= 0 and it is a product sutured manifold if and only if

SFH(M,γ) ∼= Z.

The knot K is rationally null-homologous and primitive in Y . Hence there is a surface

F properly embedded in M = Y \N(K), the exterior of K, whose boundary is the rational

longitude of K. Without loss of generality we assume F has minimal genus, g say, among all

such surfaces. One can cut open M along F and construct a sutured manifold Y (F ) whose

suture is a parallel copy of ∂F . (See [11] for the original definitions of sutured manifolds

and sutured manifold decompositions.) Our knot K will be fibred if and only if Y (F ) is

a product sutured manifold. One can compute SFH(Y (F )) in terms of the knot Floer

homology of K via the surface decomposition theorem of Juhasz:

Theorem 6.10. ([22, Theorem 1.3]) Let (M,γ) be a strongly balanced sutured manifold

and F a decomposing surface, and denote the manifold resulting from the decomposition by

(M(F ), γ(F )). Then

SFH(M(F ), γ(F )) ∼=
⊕

s∈Out(F )

SFH(M, s)
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where Out(F ) are the outer Spinc structures on (M,γ) with respect to F, i.e. the homology

classes of vector fields in which one can find a representative which is never a negative

multiple of the normal to F with respect to some Riemannian metric on M [22, Definition

1.1].

The strongly balanced hypothesis is a technical condition trivially satisfied in our case.

The condition s ∈ Out(F ) can be rephrased in terms of the Chern class of s evaluated on

F : s ∈ Out(F ) ⇐⇒ < c1(s, t0), [F ] >= c(F, t0), where c(F, t0) is a combinatorial quantity

which in our case turns out to be: c(F, t0) = 1 − 2g − p [22, Section 3]. See below for an

explication of the terms in the formula:

The Chern class of a relative Spinc structure s is defined in the following way. Take a

representative v of s (i.e. a nowhere vanishing vector field onM with predetermined behavior

on ∂M with respect to the sutures [22, §3]. Put a Riemannian metric on M and consider

the orientable 2-plane field v⊥. Consider a trivialisation of v⊥∂M which exists because of the

strongly balanced hypothesis. Then the Chern class of s relative to this trivialisation is the

obstruction to extending the trivialisation to all of M. (See [22] for details in the sutured

case and [30] for the knot complement case.) There is a natural trivialisation t0 on ∂M to

consider, namely the section consisting of vectors parallel to the meridian of K.

Since H1(M) contains no 2-torsion in our situation, the relative Spinc structures on M

are identified by their Chern class (see [15] for the closed case; the relative case can be

deduced by filling and applying the closed case result), which in turn are identified by the

evaluation on the homology class [F ]. Hence Out(F ) consists precisely of one Spinc structure

ξ0 ∈ Spinc(Y,K) (see the next paragraph for the exact identification of ξ0). Therefore, by

Theorem 6.10, SFH(Y (F )) ∼= ĤFK(Y,K, ξ0) which is 0 or Z by Lemma 6.8. As K is

primitive and Y prime, M is irreducible, and as F is genus minimising, Y (F ) is taut. Thus

SFH(Y (F )) 6∼= 0 by Theorem 6.9 and so must be isomorphic to Z. Hence K is fibred.

In fact, as for knots in S3, one can identify SFH(Y (F )) with the top summand with

respect to the Alexander grading ĤFK(Y,K, g + (p− 1)/2) ([36, Section 3.7]): In [36] the

Alexander gradingA on relative Spinc structures is defined such that the Euler characteristic

of the Floer homology is symmetric with respect to the origin. The same grading (after

the identification H2(Y,K) ∼= Z given by declaring [F ] to be the positive generator) is

defined in [29, Section 4.4] in terms of the Chern class of the Spinc structures. By Juhasz’s

decomposition formula [22, Lemma 3.10 and Theorem 1.3], we get < c1(ξ0, t0), [F ] >=

1 − 2g − p, hence A(ξ0) = (1 − 2g − p)/2 and by conjugation invariance [29, Section 4.4

Equation 2], SFH(Y (F )) ∼= ĤFK(Y,K, g + (p− 1)/2).

6.3 Proof of Theorem 1.5

We prove Theorem 1.5 here; it is an analogue of Ni’s fibring theorem [28] in an orbifold

setting. Recall that we have assumed that K is a knot in an orbi-lens-space L which is

primitive in L and which admits a non-trivial orbi-lens space surgery.

Proof of Theorem 1.5. When L is a manifold, this is just Theorem 6.5. Suppose then that L
has a non-empty singular set, say L = L(p, q; a, b). Set L0 = L(p, q; a, b)\N(Σ(L(p, q; a, b)))

and note that as in the proof of Lemma 4.9,

L0
∼=

{
S1 ×D2 if |Σ(L(p, q; a, b))| = 1

S1 × S1 × [0, 1] if |Σ(L(p, q; a, b))| = 2
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Since K admits a non-trivial orbi-lens space surgery in L, L0 admits a non-trivial cosmetic

surgery (c.f. the proof of Lemma 4.9). Lemma 5.1 then shows that L0
∼= S1 ×D2 (so we

can suppose that b = 1) and K is a Berge-Gabai knot in L0 (Definition 5.4). Let n be the

winding number of K in L0. Our hypotheses imply that gcd(p, n) = 1. Thus Theorem 6.1

implies that there is a locally trivial fibring of the exterior of K in L0 by surfaces which

intersect ∂L0 in curves parallel to the meridian slope of the solid torus N(Σ(L(p, q; a))).

Therefore we can extend the fibration over the exterior of K in L(p, q; a) in such a way that

it is everywhere transverse to Σ(L(p, q; a)). We endow each fibre F of this surface fibration

with the structure of a 2-orbifold by declaring each point of F ∩ Σ(L(p, q; a)) to be a cone

point of order a. In this way the exterior of K in L(p, q; a) admits an orbifold fibring with

base the circle.

6.4 Proof of Theorem 1.7(1) and (2)

Let K be a hyperbolic knot without hidden symmetries such that |CC(K)| > 1. If K

is periodic, it is an unwrapped Berge-Gabai knot (Proposition 5.7) and so Corollary 6.2

implies that it is fibred. If K is not periodic, then Z(K) acts freely on S3. Proposition

4.13 shows that the image K̄ of K in the lens space LK admits a non-trivial lens space

surgery. Since K̄ is primitive in LK , Theorem 6.5 shows that K̄, and therefore K, is fibred.

Thus Theorem 1.7(1) holds. Part (2) of that theorem is an immediate consequence of the

fibration result (1) and the fact that the knots are cyclically commensurable.

7 Orientation reversing symmetries

In this section we prove assertion (4) of Theorem 1.7.

Proposition 7.1. Let K be an amphichiral hyperbolic knot. Then |CC(K)| = 1. Moreover,

if K has no hidden symmetry, then |C(K)| = 1.

Proof. Let K be an amphichiral knot with S3 \K ∼= H3/ΓK . Fix an orientation-reversing

isometry θ : S3 \K → S3 \K and lift it to θ̃ ∈ Isom(H3). Let N(ΓK) be the normalizer of

ΓK in Isom(H3).

Then θ̃ ∈ N(ΓK) and normalizes N+(ΓK). The action of θ̃ permutes the index 2

subgroups of N+(ΓK) and so it leaves invariant the unique such subgroup with a torus cusp

(c.f. Lemma 4.3). Call this subgroup ΓZ and recall that H3/ΓZ
∼= (S3 \K)/Z(K) ∼= ZK .

Thus θ̃ induces an orientation-reversing isometry θ̄ : ZK → ZK which lifts to θ.

Let µK , λK be a meridian, longitude basis of the first homology of the cusp of S3 \K.

It is clear that θ∗(λK) = ±λK while θ∗(µK) = ±µK by [19]. Projecting to ZK , we see that

µK 7→ µ̄ and λK 7→ |Z(K)|λ̄ where µ̄, λ̄ is a basis of the first homology of the cusp of ZK .

Since θ̄ is orientation-reversing and lifts to θ, there is an ǫ ∈ {±1} such that

θ̄∗(λ̄) = ǫλ̄ and θ̄∗(µ̄) = −ǫµ̄.

It follows that, given any slope α = pµ̄+ qλ̄ in the cusp of ZK ,

∆(α, θ̄∗(α)) = 2|pq| ≡ 0 (mod 2).

Since the set of slopes in the cusp of ZK whose associated fillings yield orbi-lens spaces

is invariant under θ̄ and the distance between any two such slopes is at most 1 (c.f. the
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proof of Lemma 4.9), each such slope must be invariant under θ̄. But from the distance

calculation immediately above, the only slopes invariant under θ̄ are those associated to µ̄

and λ̄. The latter is the rational longitude of |ZK | and so its associated filling cannot be

an orbi-lens space. Thus the only slope which can yield an orbi-lens space is rK , the slope

associated to µ̄. Lemma 4.8 then shows that there is exactly one knot complement in the

cyclic commensurability class of S3 \K.

Proposition 7.1 together with Proposition 5.8 directly implies part (4) of Theorem 1.7.

Theorem 7.2. Let S3 \K be a chiral knot complement without hidden symmetries. Then

S3 \K is not commensurable with an orbifold which admits an orientation-reserving invo-

lution. That is, a knot complement without hidden symmetries in its orientable commensu-

rator does not have hidden symmetries in its full commensurator.

Proof. Suppose that S3\K is commensurable with an orbifold O which admits an orientation-

reversing involution. Let ΓK and ΓO be discrete subgroups of PSL(2,C) such that H3/ΓK
∼=

S3 \ K and H3/ΓO
∼= O. We furthermore suppose that ΓO and ΓK intersect in a finite-

index subgroup, by conjugating if necessary. By Mostow-Prasad rigidity, the involution of

O corresponds to an element g ∈ Isom(H3) which conjugates the fundamental group of O
in PSL(2,C) to itself. That is gΓOg

−1 = ΓO. Thus g is contained in the full commensu-

rator of ΓO, which is the same as the full commensurator of ΓK . This implies that ΓK is

commensurable with gΓkg
−1, or that S3 \ K is commensurable with its image under an

orientation-reversing involution. But this knot complement has the same volume, which

contradicts Proposition 5.8.
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